# Trapezprofil P 35-207



Aluminium Positivlage

Belastungstabellen nach DIN 18 807.

| - c.a.c cagc c    | Delastungstabenen nach bin 10 007. |   |                                                                                     |              |              |              |              |              |              |              |              |              |              |              |              |              |
|-------------------|------------------------------------|---|-------------------------------------------------------------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| EINFEL            | DTRÄGER                            |   |                                                                                     |              | a            |              |              | <u> </u>     |              |              |              |              |              |              |              |              |
| Blech-<br>dicke t | Eigen-<br>gewicht                  |   | Zulässige Belastung q [kN/m²] einschl. Blecheigengewicht bei einer Stützweite L [m] |              |              |              |              |              |              |              |              |              |              |              |              |              |
| [mm]              | la [kN/m²]                         |   | 1,00                                                                                | 1,20         | 1,40         | 1,60         | 1,80         | 2,00         | 2,20         | 2,40         | 2,60         | 2,80         | 3,00         | 3,20         | 3,40         | 3,60         |
|                   |                                    | 1 | 3,62<br>3,62                                                                        | 2,52<br>2,18 | 1,85<br>1.37 | 1,41<br>0,92 | 1,12<br>0,64 | 0,91<br>0,47 | 0,75<br>0,35 | 0,63<br>0,27 | 0,54<br>0,21 | 0,46<br>0,17 | 0,40<br>0.14 | 0,35<br>0,11 | 0,31<br>0,10 | 0,28<br>0,08 |
| 0,70              | 0,023                              | 3 | 2,82                                                                                | 1,63         | 1,03         | 0,69         | 0,48         | 0,35         | 0,26         | 0,20         | 0,16         | 0,13         | 0,10         | 0,09         | 0,07         | 0,06         |
|                   |                                    | 4 | 1,88                                                                                | 1,09         | 0,69         | 0,46         | 0,32         | 0,24         | 0,18         | 0,14         | 0,11         | 0,09         | 0,07         | 0,06         | 0,05         |              |
|                   |                                    | 1 | 5,39                                                                                | 3,74         | 2,75         | 2,10         | 1,66         | 1,35         | 1,11         | 0,94         | 0,80         | 0,69         | 0,60         | 0,53         | 0,47         | 0,42         |
|                   |                                    | 2 | 5,26                                                                                | 3,04         | 1,92         | 1,28         | 0,90         | 0,66         | 0,49         | 0,38         | 0,30         | 0,24         | 0,19         | 0,16         | 0,13         | 0,11         |
| 0,90              | 0,029                              | 3 | 3,95                                                                                | 2,28         | 1,44         | 0,96         | 0,68         | 0,49         | 0,37         | 0,29         | 0,22         | 0,18         | 0,15         | 0,12         | 0,10         | 0,08         |
|                   |                                    | 4 | 2,63                                                                                | 1,52         | 0,96         | 0,64         | 0,45         | 0,33         | 0,25         | 0,19         | 0,15         | 0,12         | 0,10         | 0,08         | 0,07         | 0,06         |

| ZWEIF             | ELDTRÄGE          | R |          |           | a T      |           | <u></u> , |      |      |          |      |      |      |      |      |      |
|-------------------|-------------------|---|----------|-----------|----------|-----------|-----------|------|------|----------|------|------|------|------|------|------|
| Blech-<br>dicke t | Eigen-<br>gewicht |   | Zulässig | e Belastu | ngg[kN/n | n²]einsch |           |      |      | erStützw |      |      |      |      |      |      |
| [mm]              | a [kN/m²]         |   | 1,00     | 1,20      | 1,40     | 1,60      | 1,80      | 2,00 | 2,20 | 2,40     | 2,60 | 2,80 | 3,00 | 3,20 | 3,40 | 3,60 |
|                   |                   | 1 | 2,63     | 1,95      | 1,49     | 1,18      | 0,95      | 0,79 | 0,66 | 0,56     | 0,48 | 0,42 | 0,36 | 0,32 | 0,29 | 0,26 |
|                   | 1                 | 2 | 2,63     | 1,95      | 1,49     | 1,18      | 0,95      | 0,79 | 0,66 | 0,56     | 0,48 | 0,41 | 0,34 | 0,28 | 0,23 | 0,19 |
| 0,70              | 0,023             | 3 | 2,63     | 1,95      | 1,49     | 1,18      | 0,95      | 0,79 | 0,64 | 0,49     | 0,39 | 0,31 | 0,25 | 0,21 | 0,17 | 0,15 |
|                   |                   | 4 | 2,63     | 1,95      | 1,49     | 1,11      | 0,78      | 0,57 | 0,43 | 0,33     | 0,26 | 0,21 | 0,17 | 0,14 | 0,12 | 0,10 |
|                   |                   | 1 | 4,46     | 3,29      | 2,52     | 1,99      | 1,60      | 1,32 | 1,11 | 0,94     | 0,81 | 0,70 | 0,61 | 0,54 | 0,48 | 0,43 |
|                   |                   | 2 | 4,46     | 3,29      | 2,52     | 1,99      | 1,60      | 1,32 | 1,11 | 0,92     | 0,72 | 0,58 | 0,47 | 0,39 | 0,32 | 0,27 |
| 0,90              | 0,029             | 3 | 4,46     | 3,29      | 2,52     | 1,99      | 1,60      | 1,19 | 0,89 | 0,69     | 0,54 | 0,43 | 0,35 | 0,29 | 0,24 | 0,20 |
|                   |                   | 4 | 4,46     | 3,29      | 2,31     | 1,55      | 1,09      | 0,79 | 0,60 | 0,46     | 0,36 | 0,29 | 0,23 | 0,19 | 0,16 | 0,14 |

| DREIFE            | LDTRÄGE           | R                                                                                   |      |      | a [  |      | b    |      | <u>-</u> |      | ··········· |      |      |      |      |      |
|-------------------|-------------------|-------------------------------------------------------------------------------------|------|------|------|------|------|------|----------|------|-------------|------|------|------|------|------|
| Blech-<br>dicke t | Eigen-<br>gewicht | zulässige Belastung q [kN/m²] einschl. Blecheigengewicht bei einer Stützweite L [m] |      |      |      |      |      |      |          |      |             |      |      |      |      |      |
| [mm]              | la[kN/m²]         |                                                                                     | 1,00 | 1,20 | 1,40 | 1,60 | 1,80 | 2,00 | 2,20     | 2,40 | 2,60        | 2,80 | 3,00 | 3,20 | 3,40 | 3,60 |
|                   |                   | 1                                                                                   | 3,17 | 2,36 | 1,82 | 1,44 | 1,17 | 0,97 | 0,81     | 0,69 | 0,59        | 0,52 | 0,45 | 0,40 | 0,36 | 0,32 |
|                   |                   | 2                                                                                   | 3,17 | 2,36 | 1,82 | 1,44 | 1,17 | 0,89 | 0,67     | 0,51 | 0,40        | 0,32 | 0,26 | 0,22 | 0,18 | 0,15 |
| 0,70              | 0,023             | 3                                                                                   | 3,17 | 2,36 | 1,82 | 1,30 | 0,91 | 0,67 | 0,50     | 0,39 | 0,30        | 0,24 | 0,20 | 0,16 | 0,14 | 0,11 |
|                   |                   | 4                                                                                   | 3,17 | 2,05 | 1,29 | 0,87 | 0,61 | 0,44 | 0,33     | 0,26 | 0,20        | 0,16 | 0,13 | 0,11 | 0,09 | 0,08 |
|                   |                   | 1                                                                                   | 5,37 | 3,99 | 3,07 | 2,43 | 1,97 | 1,63 | 1,37     | 1,16 | 1,00        | 0,87 | 0,76 | 0,67 | 0,60 | 0,54 |
|                   |                   | 2                                                                                   | 5,37 | 3,99 | 3,07 | 2,43 | 1,70 | 1,24 | 0,93     | 0,72 | 0,57        | 0,45 | 0,37 | 0,30 | 0,25 | 0,21 |
| 0,90              | 0,029             | 3                                                                                   | 5,37 | 3,99 | 2,71 | 1,82 | 1,28 | 0,93 | 0,70     | 0,54 | 0,42        | 0,34 | 0,28 | 0,23 | 0,19 | 0,16 |
|                   | ,                 | 4                                                                                   | 4,97 | 2,87 | 1,81 | 1,21 | 0,85 | 0,62 | 0,47     | 0,36 | 0,28        | 0,23 | 0,18 | 0,15 | 0,13 | 0,11 |

Zeile 1 = Ohne Beschränkung der Durchbiegung

Zeile 2 = Zulässige Belastung bei einer Durchbiegung von f<= L/150 Zeile 3 = Zulässige Belastung bei einer Durchbiegung von f<= L/200

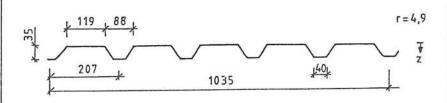
Zeile 4 = Zulässige Belastung bei einer Durchbiegung von f<= L/300

Endauflagerbreite a>=40 mm Zwischenauflagerbreite b>=60mm



Aluminium- Trapezprofil

PP - TRP 35-207


Blatt 7

Querschnitts- und Schubfeldwerte nach DIN 18807, Teil 6

Profiltafel in

Positivlage

Maße in mm



Nennwert der Spannung an der 0,2%- Dehngrenze: R<sub>p0,2</sub> = 180 N/mm<sup>2</sup>

| Blech-       | Eigen-         | Biegu           | ung 1)          |                | Non                     | malkraftbe   | eanspruchu      | ing             |                    | Grenzsti            | itzweiten <sup>3)</sup> |
|--------------|----------------|-----------------|-----------------|----------------|-------------------------|--------------|-----------------|-----------------|--------------------|---------------------|-------------------------|
| dicke        | last           |                 |                 |                | cht reduzie<br>Querschn |              | w<br>Qu         |                 | Einfeld-<br>träger | Mehrfeld-<br>träger |                         |
| t            | 9              | l <sub>ef</sub> | l <sub>ef</sub> | A <sub>g</sub> | i <sub>g</sub>          | Zg           | A <sub>ef</sub> | i <sub>ef</sub> | Z <sub>ef</sub>    | l <sub>gr</sub>     | l <sub>gr</sub>         |
| mm           | kN/m²          | cm⁴/m           | cm⁴/m           | cm²/m          | cm                      | cm           | cm²/m           | cm              | cm                 | m                   | m                       |
| 0,70<br>0,90 | 0,023<br>0,029 | 10,49<br>14,68  | 13,45<br>19,12  | 8,25<br>10,60  | 1,42<br>1,42            | 1,18<br>1,18 | 2,48<br>4,11    | 1,58<br>1,54    | 1,75<br>1,75       |                     |                         |
|              |                |                 |                 |                |                         |              |                 |                 |                    |                     |                         |

| Schubfeldwerte | Э |
|----------------|---|
|----------------|---|

|         |                                   |                                        |                        | (750  [kN/m])             |                                                  |                                       |                              |
|---------|-----------------------------------|----------------------------------------|------------------------|---------------------------|--------------------------------------------------|---------------------------------------|------------------------------|
| t<br>mm | L <sub>s</sub> <sup>4)</sup><br>m | T <sub>1,k</sub> <sup>4)</sup><br>kN/m | k <sub>1</sub><br>m/kN | k <sub>2</sub> '<br>m²/kN | k <sub>1</sub> <sup>5)</sup><br>kN <sup>-1</sup> | k <sub>2</sub> <sup>5)</sup><br>m²/kN | K <sub>3</sub> <sup>6)</sup> |
|         |                                   |                                        |                        |                           |                                                  |                                       |                              |

<sup>1)</sup> Wirksame Trägheitsmomente für Lastrichtung nach unten (+) bzw. oben (-).

<sup>5)</sup> Falls erforderlich, darf die Gesamtverformung eines Schubfeldes wie folgt ermittelt werden:

$$f = \left[ \left( k_1' + k_1^* \cdot e_L \right) + \left( k_2' + k_2^* \right) / L_S \right] \cdot 10^{-1} \cdot a \cdot vorhT$$

mit e<sub>L</sub> = Abstand der Verbindungen im Längsstoß in m

a = Schubfeldbreite in m, senkrecht zur Profilierrichtung

T = vorhandener Schubfluß in kN/m

<sup>6)</sup> T·  $k_3$ +A  $\leq R_{A,k}/\gamma_M$ , mit T=  $\gamma_F$ - facher Schubfluß

<sup>&</sup>lt;sup>2)</sup> Wirksamer Querschnitt für eine konstante Druckspannung  $\sigma = R_{p0,2}$ 

<sup>&</sup>lt;sup>3)</sup> Maximale Stützweiten, bis zu denen das Trapezprofil ohne lastverteilende Maßnahmen begangen werden darf.

<sup>&</sup>lt;sup>4)</sup> Für Einzelstützweiten  $L_{si} \le L_R$  darf  $T_{1,k}$  aus der Tabelle entnommen oder mit  $(L_R/L_{si})^2$  erhöht werden; für  $L_{si} > L_R$  muß  $T_{1,k}$  mit  $(L_R/L_{si})^2$  abgemindert werden. Für Einfeldträger ist  $T_{1,k} = 2$  x Tabellenwert.

Aluminium- Trapezprofil

PP - TRP 35-207

Blatt 8

Charakteristische Tragfähigkeitswerte nach DIN 18807, Teil 6

Profiltafel in

Positivlage

Tragfähigkeitswerte für nach unten gerichtete und andrückende Flächen- Belastung <sup>1)</sup>
Als Teilsicherheitsbeiwert ist x = 1.1 zu setzen.

| cke moment lager- |                                         |                                                                                                                                                           | Elastisc                                                                                                                                                                                                                        | h aufnehml                                             | pare Schnit                                            | größen an                                              | Zwische                                                | nstützen <sup>5)</sup>                                 |                                                        |
|-------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|
| moment            | lager-<br>kraft                         |                                                                                                                                                           |                                                                                                                                                                                                                                 | max.<br>Stütz-<br>moment                               | max.<br>Auflager-<br>kraft                             |                                                        |                                                        | max.<br>Stütz-<br>moment                               | max.<br>Auflager-<br>kraft                             |
| $M_{F,k}$         | R <sub>A,k</sub>                        | $M_{B,k}^0$                                                                                                                                               | R <sub>B,k</sub>                                                                                                                                                                                                                | max M <sub>B,k</sub>                                   | max R <sub>B,k</sub>                                   | M <sub>B,k</sub>                                       | $R_{B,k}^0$                                            | max M <sub>B,k</sub>                                   | max R <sub>B,k</sub>                                   |
| kNm/m             | kN/m                                    | kNm/m                                                                                                                                                     | kN/m                                                                                                                                                                                                                            | kNm/m                                                  | kN/m                                                   | kNm/m                                                  | kN/m                                                   | kNm/m                                                  | kN/m                                                   |
| •                 | <sup>2)</sup> b <sub>A</sub> = 40<br>mm | Zv                                                                                                                                                        |                                                                                                                                                                                                                                 |                                                        | e <sup>3)</sup>                                        | Zv                                                     |                                                        | e <sup>4)</sup>                                        |                                                        |
| 0,747<br>1,11     | 4,45<br>7,66                            | 0,706<br>1,182                                                                                                                                            | 11,32<br>19,50                                                                                                                                                                                                                  | 0,706<br>1,182                                         | 10,12<br>17,44                                         | 0,706<br>1,182                                         | 15,42<br>26,58                                         | 0,706<br>1,182                                         | 13,80<br>23,77                                         |
|                   | M <sub>F,k</sub><br>kNm/m               | moment         lager-kraft           M <sub>F,k</sub> R <sub>A,k</sub> kNm/m         kN/m           2)b <sub>A</sub> = 40 mm         0,747           4,45 | moment         lager-kraft           M <sub>F,k</sub> R <sub>A,k</sub> M <sup>0</sup> <sub>B,k</sub> kNm/m         kNm/m         kNm/m           2)b <sub>A</sub> = 40 mm         Zv           0,747         4,45         0,706 | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ |

Tragfähigkeitswerte für nach oben gerichtete und abhebende Flächen- Belastung <sup>1)</sup>
Als Teilsicherheitsbeiwert ist y<sub>v</sub>= 1,1 zu setzen.

| Blech-<br>dicke | Feld-<br>moment | Verb             | indung in        | jedem a          | nliegender             | Gurt               | Verbin           | idung in je | edem 2.          | anliegende             | en Gurt            |
|-----------------|-----------------|------------------|------------------|------------------|------------------------|--------------------|------------------|-------------|------------------|------------------------|--------------------|
|                 |                 | Endauf-<br>lager |                  | Zwische          | nauflager <sup>6</sup> | 5)                 | Endauf-<br>lager |             | Zwische          | nauflager <sup>6</sup> | 5)                 |
| t               | $M_{F,k}$       | R <sub>A.k</sub> | M <sub>B,k</sub> | R <sub>B,k</sub> | max M <sub>B,k</sub>   | max V <sub>k</sub> | R <sub>A,k</sub> | $M_{B,k}^0$ | R <sub>B,k</sub> | max M <sub>B,k</sub>   | max V <sub>k</sub> |
| mm              | kNm/m           | kN/m             | kNm/m            | kN/m             | kNm/m                  | kN/m               | kN/m             | kNm/m       | kN/m             | kNm/m                  | kN/m               |
| 0,70<br>0,90    | 0,706<br>1,182  | 19,40<br>32,08   |                  |                  | 0,747<br>1,11          | 19,40<br>32,08     | 9,70<br>16,04    |             |                  | 0,374<br>0,556         | 9,70<br>16,04      |
|                 |                 | ٠                |                  |                  | *                      |                    |                  |             |                  |                        |                    |

An den Stellen von Linienlasten quer zur Spannrichtung und von Einzellasten ist der Nachweis nicht mit dem Feldmoment  $M_{E,k}$ , sondern mit dem Stützmoment max  $M_{B,k}$  für die entgegengesetzte Lastrichtung zu führen

5) Interaktionsbeziehung für M und R

$$\frac{M}{\max M_{B,k}^0/\gamma_M} + \left(\frac{R}{R_{B,k}^0/\gamma_M}\right)^2 \le 1$$

6) Interaktionsbeziehung für M und V

$$\frac{M}{\max M_{B,k}/\gamma_M} + \frac{V}{V_k/\gamma_M} \le 1,3$$

b<sub>A</sub>= Endauflagebreite. Bei einem Profilüberstand ü [mm] > s<sub>w</sub>/t dürfen die R<sub>A,k</sub>- Werte um 20% erhöht werden.

Für kleinere Auflagerbreiten b<sub>B</sub> als angegeben müssen die aufnehmbaren Tragfähigkeitswerte linear im entsprechenden Verhältnis reduziert werden. Für b<sub>B</sub>< 10 mm, z.B. bei Rohren, darf b<sub>B</sub> = 10 mm eingesetzt werden.

Bei Auflagerbreiten, die zwischen den aufgeführten Werten liegen, dürfen die aufnehmbaren Tragfähigkeitswerte jeweils linear interpoliert werden.

|                        | - "            |
|------------------------|----------------|
| Aluminium-             | Trapezprofil   |
| , arear in the country | 11000000010111 |

PP - TRP 35-207

Blatt 9

Charakteristische Tragfähigkeitswerte für Verbindungen nach DIN 18807, Teil 6

### Profiltafel in Positivlage

Aufnehmbare Zugkraft  $Z_k$  in kN pro Verbindungselement in in Abhängigkeit von der Blechdicke t in mm und dem Scheibendurchmesser d in mm. <sup>1) 2)</sup>

Als Teilsicherheitsbeiwert ist  $\gamma_{M}$ = 1,33 zu setzen.

| 7M         | t | 0,   | 70   | 0,   | 90   |   | / |
|------------|---|------|------|------|------|---|---|
| Verbindung | d | 16   | 19   | 16   | 19   |   |   |
|            |   | 0,82 | 0,89 | 1,05 | 1,14 |   |   |
|            |   |      |      |      |      |   |   |
|            |   |      |      |      |      | , |   |
|            |   |      |      |      |      |   |   |

<sup>&</sup>lt;sup>1)</sup>  $Z_{kI} = \alpha_{L} \cdot \alpha_{M} \cdot \alpha_{E} \cdot Z_{k}$ 

geprüft \_\_\_\_\_ Bess. Landesprüfstelle für Baustatik

 $<sup>\</sup>alpha_L$  = Beiwert zur Berücksichtigung der Biegzugspannung im angeschlossenen Gurt nach DIN 18807, Teil 6, Tabelle 2 ( $\alpha_L$  = 1,0 bei Befestigung am Endauflager und im Obergurt)

 $<sup>\</sup>alpha_{\rm M}$  = Beiwert zur Berücksichtigung des Werkstoffs der Dichtscheiben nach DIN 18807, Teil 6, Tabelle 3

 $<sup>\</sup>alpha_{\rm E}^{\rm m}$  = Beiwert zur Berücksichtigung der Anordnung der Verbindungen nach DIN 18807, Teil 6, Tabelle 4

<sup>&</sup>lt;sup>2)</sup> Es ist außerdem die aufnehmbare Zugkraft für die Verbindung mit der jeweiligen Unterkonstruktion und für das Verbindungselement selbst zu berücksichtigen.

## Trapezprofil P 35-207

Aluminium Negativlage

Belastungstabellen nach DIN 18 807.

| EINFEL            | .DTRÄGER          |                  |                              |                                                                  | a                            |                              |                              | <u> </u>                     |                              |                              |                              |                              |                              |                              |                              |                              |
|-------------------|-------------------|------------------|------------------------------|------------------------------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Blech-<br>dicke t | Eigen-<br>gewicht |                  | Zulässig                     | e Belastu                                                        | ngq[kN/r                     | n²]einsch                    | l. Blechei                   | gengewic                     | ht bei ein                   | erStützw                     | eiteL[m]                     |                              |                              |                              |                              |                              |
| [mm]              | a [kN/m²]         |                  | 1,00                         | 1,20 1,40 1,60 1,80 2,00 2,20 2,40 2,60 2,80 3,00 3,20 3,40 3,60 |                              |                              |                              |                              |                              |                              |                              |                              |                              |                              |                              |                              |
| 0,70              | 0,023             | 1<br>2<br>3<br>4 | 3,42<br>3,42<br>3,42<br>2,41 | 2,38<br>2,38<br>2,09<br>1,39                                     | 1,75<br>1,75<br>1,32<br>0,88 | 1,34<br>1,18<br>0,88<br>0,59 | 1,06<br>0,83<br>0,62<br>0,59 | 0,86<br>0,60<br>0,45<br>0,30 | 0,71<br>0,45<br>0,34<br>0,23 | 0,59<br>0,35<br>0,26<br>0,17 | 0,51<br>0,27<br>0,21<br>0,14 | 0,44<br>0,22<br>0,16<br>0,11 | 0,38<br>0,18<br>0,13<br>0,09 | 0,33<br>0,15<br>0,11<br>0,07 | 0,30<br>0,12<br>0,09<br>0,06 | 0,26<br>0,10<br>0,08<br>0,05 |
| 0,90              | 0,029             | 1<br>2<br>3<br>4 | 5,73<br>5,73<br>5,14<br>3,43 | 3,98<br>3,96<br>2,97<br>1,98                                     | 2,93<br>2,50<br>1,87<br>1,25 | 2,24<br>1,67<br>1,25<br>0,84 | 1,77<br>1,17<br>0,88<br>0,59 | 1,43<br>0,86<br>0,64<br>0,43 | 1,18<br>0,64<br>0,48<br>0,32 | 1,00<br>0,50<br>0,37<br>0,25 | 0,85<br>0,39<br>0,29<br>0,19 | 0,73<br>0,31<br>0,23<br>0,16 | 0,64<br>0,25<br>0,19<br>0,13 | 0,56<br>0,21<br>0,16<br>0,10 | 0,50<br>0,17<br>0,13<br>0,09 | 0,44<br>0,15<br>0,11<br>0,07 |

| ZWEIF             | ELDTRÄGI          | ER |      |                                                                  | a    |      |            | <u></u> |            | <u></u> |      |      |      |      |      |      |
|-------------------|-------------------|----|------|------------------------------------------------------------------|------|------|------------|---------|------------|---------|------|------|------|------|------|------|
| Blech-<br>dicke t | Eigen-<br>gewicht |    |      |                                                                  |      |      | l. Blechei |         | ht bei ein |         |      |      |      |      |      |      |
| [mm]              | a [kN/m²]         |    | 1,00 | 1,20 1,40 1,60 1,80 2,00 2,20 2,40 2,60 2,80 3,00 3,20 3,40 3,60 |      |      |            |         |            |         |      |      |      |      |      |      |
|                   |                   | 1  | 2,73 | 2,02                                                             | 1,56 | 1,23 | 1,00       | 0,82    | 0,69       | 0,59    | 0,51 | 0,44 | 0,38 | 0,34 | 0,30 | 0,27 |
|                   |                   | 2  | 2,73 | 2,02                                                             | 1,56 | 1,23 | 1,00       | 0,82    | 0,69       | 0,59    | 0,51 | 0,44 | 0,38 | 0,34 | 0,30 | 0,25 |
| 0,70              | 0,023             | 3  | 2,73 | 2,02                                                             | 1,56 | 1,23 | 1,00       | 0,82    | 0,69       | 0,59    | 0,50 | 0,40 | 0,32 | 0,27 | 0,22 | 0,19 |
|                   |                   | 4  | 2,73 | 2,02                                                             | 1,56 | 1,23 | 1,00       | 0,73    | 0,55       | 0,42    | 0,33 | 0,26 | 0,22 | 0,18 | 0,15 | 0,12 |
|                   |                   | 1  | 4,28 | 3,14                                                             | 2,40 | 1,89 | 1,52       | 1,25    | 1,05       | 0,89    | 0,76 | 0,66 | 0,58 | 0,51 | 0,45 | 0,41 |
|                   |                   | 2  | 4,28 | 3,14                                                             | 2,40 | 1,89 | 1,52       | 1,25    | 1,05       | 0,89    | 0,76 | 0,66 | 0,58 | 0,50 | 0,42 | 0,35 |
| 0,90              | 0,029             | 3  | 4,28 | 3,14                                                             | 2,40 | 1,89 | 1,52       | 1,25    | 1,05       | 0,89    | 0,70 | 0,56 | 0,46 | 0,38 | 0,31 | 0,27 |
|                   | ·                 | 4  | 4,28 | 3,14                                                             | 2,40 | 1,89 | 1,41       | 1,03    | 0,77       | 0,60    | 0,47 | 0,38 | 0,31 | 0,25 | 0,21 | 0,18 |

| DREIF           | ELDTRÄGE  | R        |      |      | a [  |      |      |      |      |      |      |      |      |      |      |      |
|-----------------|-----------|----------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| Blech-   Eigen- |           |          |      |      |      |      |      |      |      |      |      | 2.60 |      |      |      |      |
| [mm]            | a [kN/m²] | <u> </u> |      |      | 1,40 | ,    | ,    | 2,00 |      |      |      | ,    | .,   | 3,20 | 3,40 | 3,60 |
|                 |           | 1        | 3,28 | 2,45 | 1,89 | 1,50 | 1,22 | 1,01 | 0,85 | 0,72 | 0,62 | 0,54 | 0,48 | 0,42 | 0,38 | 0,34 |
|                 |           | 2        | 3,28 | 2,45 | 1,89 | 1,50 | 1,22 | 1,01 | 0,85 | 0,66 | 0,52 | 0,41 | 0,34 | 0,28 | 0,23 | 0,20 |
| 0,70            | 0,023     | 3        | 3,28 | 2,45 | 1,89 | 1,50 | 1,17 | 0,85 | 0,64 | 0,49 | 0,39 | 0,31 | 0,25 | 0,21 | 0,17 | 0,15 |
|                 |           | 4        | 3,28 | 2,45 | 1,66 | 1,11 | 0,78 | 0,57 | 0,43 | 0,33 | 0,26 | 0,21 | 0,17 | 0,14 | 0,12 | 0,10 |
|                 |           | 1        | 5,17 | 3,82 | 2,93 | 2,32 | 1,87 | 1,54 | 1,29 | 1,10 | 0,94 | 0,82 | 0,72 | 0,63 | 0,56 | 0,50 |
|                 |           | 2        | 5,17 | 3,82 | 2,93 | 2,32 | 1,87 | 1,54 | 1,21 | 0,94 | 0,74 | 0,59 | 0,48 | 0,39 | 0,33 | 0,28 |
| 0,90            | 0,029     | 3        | 5,17 | 3,82 | 2,93 | 2,32 | 1,66 | 1,21 | 0,91 | 0,70 | 0,55 | 0,44 | 0,36 | 0,30 | 0,25 | 0,21 |
|                 |           | 4        | 5,17 | 3,74 | 2,36 | 1,58 | 1,11 | 0,81 | 0,61 | 0,47 | 0,37 | 0,29 | 0,24 | 0,20 | 0,16 | 0,14 |



Zeile 2 = Zulässige Belastung bei einer Durchbiegung von f<= L/150



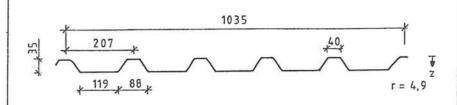
Zeile 3 = Zulässige Belastung bei einer Durchbiegung von f<= L/200

Zeile 4 = Zulässige Belastung bei einer Durchbiegung von f<= L/300

Aluminium-Trapezprofil

PP - TRP 35-207

Blatt 10


Querschnitts- und Schubfeldwerte nach DIN 18807, Teil 6

Profiltafel in

Negativlage

Maße in mm

Schubfeldwerte



Nennwert der Spannung an der 0,2%- Dehngrenze: R<sub>p0,2</sub> = 180 N/mm<sup>2</sup>

| Blech-       | Eigen-         | uerschnitt<br>Biegt          | ung 1)             | T T            | Non                     | malkraftbe     | anspruchu       | ing                   |                 | Grenzsti           | itzweiten <sup>3</sup> |
|--------------|----------------|------------------------------|--------------------|----------------|-------------------------|----------------|-----------------|-----------------------|-----------------|--------------------|------------------------|
| dicke        | last           | -                            |                    | 1              | cht reduzie<br>Querschn |                |                 | irksamer<br>erschnitt |                 | Einfeld-<br>träger | Mehrfeld-<br>träger    |
| t            | g              | l <sup>+</sup> <sub>ef</sub> | I <sub>ef</sub>    | A <sub>g</sub> | i <sub>g</sub>          | Z <sub>g</sub> | A <sub>ef</sub> | i <sub>ef</sub>       | Z <sub>ef</sub> | l <sub>gr</sub>    | l <sub>gr</sub>        |
| mm           | kN/m²          | cm⁴/m                        | cm <sup>4</sup> /m | cm²/m          | cm                      | cm             | cm²/m           | cm                    | cm              | m                  | m                      |
| 0,70<br>0,90 | 0,023<br>0,029 | 13,45<br>19,12               | 10,49<br>14,68     | 8,25<br>10,60  | 1,42<br>1,42            | 2,32<br>2,32   | 2,48<br>4,11    | 1,58<br>1,54          | 1,75<br>1,75    |                    |                        |
|              |                |                              |                    |                |                         |                |                 |                       |                 |                    |                        |

|    |                   |                                |                                   | 750 [kN/m]          |                   |                   |                              |
|----|-------------------|--------------------------------|-----------------------------------|---------------------|-------------------|-------------------|------------------------------|
|    |                   |                                | G <sub>S</sub> =10 <sup>4</sup> / | $(k_1' + k_2'/L_S)$ |                   |                   |                              |
| t  | L <sub>s</sub> 4) | T <sub>1,k</sub> <sup>4)</sup> | k <sub>1</sub> '                  | k <sub>2</sub> '    | k <sub>1</sub> 5) | k <sub>2</sub> 5) | K <sub>3</sub> <sup>6)</sup> |
| mm | m l               | kN/m                           | m/kN                              | m²/kN               | kN <sup>-1</sup>  | m²/kN             | ₩.                           |

- 1) Wirksame Trägheitsmomente für Lastrichtung nach unten (+) bzw. oben (-).
- <sup>2)</sup> Wirksamer Querschnitt für eine konstante Druckspannung  $\sigma$  =  $R_{p0,2}$
- 3) Maximale Stützweiten, bis zu denen das Trapezprofil ohne lastverteilende Maßnahmen begangen werden
- <sup>4)</sup> Für Einzelstützweiten  $L_{si} \le L_R$  darf  $T_{1,k}$  aus der Tabelle entnommen oder mit  $(L_R/L_{si})^2$  erhöht werden; für  $L_{si} > L_R$  muß  $T_{1,k}$  mit  $(L_R/L_{si})^2$  abgemindert werden. Für Einfeldträger ist  $T_{1,k} = 2$  x Tabellenwert.
- <sup>5)</sup> Falls erforderlich, darf die Gesamtverformung eines Schubfeldes wie folgt ermittelt werden:

$$f = \left[ \left( k_1' + k_1^* \cdot e_L \right) + \left( k_2' + k_2^* \right) / L_S \right] \cdot 10^{-1} \cdot a \cdot vorhT$$

mit e<sub>L</sub> = Abstand der Verbindungen im Längsstoß in m a = Schubfeldbreite in m, senkrecht zur Profilierrichtung

T = vorhandener Schubfluß in kN/m

6) T.  $k_3+A \le R_{A,k}/\gamma_M$ , mit T=  $\gamma_F$ - facher Schubfluß

geprüft. Hess. Landesprüfstelle für Baustatik

Aluminium- Trapezprofil

PP - TRP 35-207

Blatt 11

Charakteristische Tragfähigkeitswerte nach DIN 18807, Teil 6

Profiltafel in

Negativlage

Tragfähigkeitswerte für nach unten gerichtete und andrückende Flächen- Belastung <sup>1</sup> Als Teilsicherheitsbeiwert ist  $\gamma_{\nu} = 1.1$  zu setzen.

| Feld-         | Endauf-                                 |                                                                                                                                                             | Elastisc                                                                                                                                                             | h aufnehml                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | pare Schnit                | tgrößen an                                             | Zwische                                                | nstützen ⁵)                                            |                                                        |
|---------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|
| moment        | lager-<br>kraft                         |                                                                                                                                                             |                                                                                                                                                                      | max.<br>Stütz-<br>moment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | max.<br>Auflager-<br>kraft |                                                        |                                                        | max.<br>Stütz-<br>moment                               | max.<br>Auflager-<br>kraft                             |
| $M_{F,k}$     | R <sub>A,k</sub>                        | M <sub>B,k</sub>                                                                                                                                            | R <sub>B,k</sub>                                                                                                                                                     | max M <sub>B,k</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | max R <sub>B,k</sub>       | M <sub>B,k</sub>                                       | $R_{B,k}^0$                                            | max M <sub>B,k</sub>                                   | max R <sub>B,k</sub>                                   |
| kNm/m         | kN/m                                    | kNm/m                                                                                                                                                       | kN/m                                                                                                                                                                 | kNm/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | kN/m                       | kNm/m                                                  | kN/m                                                   | kNm/m                                                  | kN/m                                                   |
|               | <sup>2)</sup> b <sub>A</sub> = 40<br>mm | Zv                                                                                                                                                          |                                                                                                                                                                      | The state of the s | <sup>3)</sup>              | Zv                                                     |                                                        |                                                        | 4)                                                     |
| 0,706<br>1,18 | 4,45<br>7,66                            | 0,747<br>1,11                                                                                                                                               | 11,32<br>19,50                                                                                                                                                       | 0,747<br>1,11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10,12<br>17,44             | 0,747<br>1,11                                          | 15,42<br>26,58                                         | 0,747<br>1,11                                          | 13,80<br>23,77                                         |
|               | M <sub>F,k</sub><br>kNm/m               | moment         lager-kraft           M <sub>F,k</sub> R <sub>A,k</sub> kNm/m         kN/m <sup>2)</sup> b <sub>A</sub> = 40 mm         0,706           4,45 | moment         lager-kraft $M_{F,k}$ $R_{A,k}$ $M_{B,k}^0$ kNm/m         kN/m         kNm/m $^{2)}b_A = 40$ mm         Zv           0,706         4,45         0,747 | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ |

Tragfähigkeitswerte für nach oben gerichtete und abhebende Flächen- Belastung <sup>1)</sup> Als Teilsicherheitsbeiwert ist γ<sub>ν</sub>= 1,1 zu setzen.

| Blech-<br>dicke | Feld-<br>moment | l .              | indung in        | jedem a          | ınliegender            | Gurt               | Verbin           | idung in je      | edem 2.          | en Gurt                |                    |
|-----------------|-----------------|------------------|------------------|------------------|------------------------|--------------------|------------------|------------------|------------------|------------------------|--------------------|
|                 |                 | Endauf-<br>lager |                  | Zwische          | nauflager <sup>6</sup> | 5)                 | Endauf-<br>lager |                  | Zwische          | nauflager <sup>6</sup> | 5)                 |
| t               | $M_{F,k}$       | R <sub>A,k</sub> | M <sub>B,k</sub> | R <sub>B,k</sub> | max M <sub>B,k</sub>   | max V <sub>k</sub> | R <sub>A,k</sub> | M <sub>B,k</sub> | R <sub>B,k</sub> | max M <sub>B,k</sub>   | max V <sub>k</sub> |
| mm              | kNm/m           | kN/m             | kNm/m            | kN/m             | kNm/m                  | kN/m               | kN/m             | kNm/m            | kN/m             | kNm/m                  | kN/m               |
| 0,70<br>0,90    | 0,747<br>1,11   | 19,40<br>32,08   |                  |                  | 0,706<br>1,182         | 19,40<br>32,08     | 9,70<br>16,04    |                  |                  | 0,353<br>0,591         | 9,70<br>16,04      |
|                 |                 |                  |                  |                  |                        |                    |                  |                  |                  |                        |                    |

- An den Stellen von Linienlasten quer zur Spannrichtung und von Einzellasten ist der Nachweis nicht mit dem Feldmoment M<sub>F,k</sub>, sondern mit dem Stützmoment max M<sub>B,k</sub> für die entgegengesetzte Lastrichtung zu führen
- <sup>2)</sup>  $b_A$ = Endauflagebreite. Bei einem Profilüberstand ü [mm] >  $s_w$ /t dürfen die  $R_{A,k}$  Werte um 20% erhöht werden.
- Für kleinere Auflagerbreiten b<sub>B</sub> als angegeben müssen die aufnehmbaren Tragfähigkeitswerte linear im entsprechenden Verhältnis reduziert werden. Für b<sub>B</sub>< 10 mm, z.B. bei Rohren, darf b<sub>B</sub> = 10 mm eingesetzt werden.
- <sup>4)</sup> Bei Auflagerbreiten, die zwischen den aufgeführten Werten liegen, dürfen die aufnehmbaren Tragfähigkeitswerte jeweils linear interpoliert werden.
- 5) Interaktionsbeziehung für M und R

$$\frac{M}{\max M_{B,k}^0/\gamma_M} + \left(\frac{R}{R_{B,k}^0/\gamma_M}\right)^2 \le 1$$

6) Interaktionsbeziehung für M und V

$$\frac{M}{\max M_{B,k}/\gamma_M} + \frac{V}{V_k/\gamma_M} \le 1,3$$

Aluminium-Trapezprofil

PP - TRP 35-207

Blatt 12

Charakteristische Tragfähigkeitswerte für Verbindungen nach DIN 18807, Teil 6

#### Profiltafel in Negativlage

Aufnehmbare Zugkraft  $Z_k$  in kN pro Verbindungselement in in Abhängigkeit von der Blechdicke t in mm und dem Scheibendurchmesser d in mm. <sup>1) 2)</sup>

Als Teilsicherheitsbeiwert ist  $\gamma_{M}$ = 1,33 zu setzen.

| 24/3.2     | t | 0,   | 70   | 0,   | 90   |  |  |
|------------|---|------|------|------|------|--|--|
| Verbindung | d | 16   | 19   | 16   | 19   |  |  |
|            |   | 0,82 | 0,89 | 1,05 | 1,14 |  |  |
|            |   | 0,82 | 0,89 | 1,05 | 1,14 |  |  |
|            |   | 0,82 | 0,89 | 1,05 | 1,14 |  |  |
|            |   |      |      |      |      |  |  |

<sup>&</sup>lt;sup>1)</sup>  $Z_{kI} = \alpha_{l} \cdot \alpha_{M} \cdot \alpha_{E} \cdot Z_{k}$ 

 $<sup>\</sup>alpha_L$  = Beiwert zur Berücksichtigung der Biegzugspannung im angeschlossenen Gurt nach DIN 18807, Teil 6, Tabelle 2 ( $\alpha_L$  = 1,0 bei Befestigung am Endauflager und im Obergurt)

 $<sup>\</sup>alpha_{\rm M}$  = Beiwert zur Berücksichtigung des Werkstoffs der Dichtscheiben nach DIN 18807, Teil 6, Tabelle 3

 $<sup>\</sup>alpha_{\rm E}^{\rm M}$  = Beiwert zur Berücksichtigung der Anordnung der Verbindungen nach DIN 18807, Teil 6, Tabelle 4

Es ist außerdem die aufnehmbare Zugkraft für die Verbindung mit der jeweiligen Unterkonstruktion und für das Verbindungselement selbst zu berücksichtigen.

Belastungstabellen nach DIN 18 807. Die Werte im Rasterfeld gelten für tragende Dachsysteme.

| EINFEI            | LDTRÄGER          |                              |   |              | i            | a            |              |              | <u> </u>     |              |              |              |              |              |              |              |              |
|-------------------|-------------------|------------------------------|---|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| Blech-<br>dicke t | Eigen-<br>gewicht | Grenz-<br>stützweite<br> [m] |   |              |              |              |              |              |              |              | erStützwe    |              | 1 200        | 1 2 00       | 2 20         | 2 40         | 2.60         |
| [mm]              | a [kN/m²]         | HIIMI                        | 1 | 1,00         | 1,20         | 1,40         | 1,60         | 1,80<br>1,35 | 2,00         | 2,20         | 2,40         | 2,60         | 2,80         | 3,00         | 3,20         | 3,40         | 3,60<br>0,34 |
|                   |                   |                              | 2 | 4,39<br>4,39 | 3,05<br>3,05 | 2,24<br>2,24 | 1,71<br>1,71 | 1,35         | 1,10<br>0,92 | 0,91<br>0,69 | 0,76<br>0,53 | 0,65<br>0,42 | 0,56<br>0,34 | 0,49<br>0,27 | 0,43<br>0.23 | 0,38<br>0.19 | 0,34         |
| 0,50              | 0.048             | -                            | 3 | 4,39         | 3.05         | 2.02         | 1.35         | 0,95         | 0,69         | 0,52         | 0.40         | 0,31         | 0.25         | 0.20         | 0.17         | 0.14         | 0,12         |
| .,                |                   |                              | 4 | 3,69         | 2,13         | 1,34         | 0,90         | 0,63         | 0,46         | 0,35         | 0,27         | 0,21         | 0,17         | 0,14         | 0,11         | 0,09         | 0,08         |
|                   |                   |                              | 1 | 6,54         | 4,54         | 3,34         | 2,55         | 2,02         | 1,63         | 1,35         | 1,14         | 0,97         | 0,83         | 0,73         | 0,64         | 0,57         | 0,50         |
|                   |                   |                              | 2 | 6,54         | 4,54         | 3,34         | 2,48         | 1,74         | 1,27         | 0,95         | 0,73         | 0,58         | 0,46         | 0,38         | 0,31         | 0,26         | 0,22         |
| 0,63              | 0,061             | -                            | 3 | 6,54         | 4,40         | 2,77         | 1,86         | 1,30         | 0,95         | 0,71         | 0,55         | 0,43         | 0,35         | 0,28         | 0,23         | 0,19         | 0,16         |
|                   |                   |                              | 4 | 5,07         | 2,93         | 1,85         | 1,24         | 0,87         | 0,63         | 0,48         | 0,37         | 0,29         | 0,23         | 0,19         | 0,15         | 0,13         | 0,11         |
|                   |                   |                              | 1 | 8,64         | 6,00         | 4,41         | 3,38         | 2,67         | 2,16         | 1,79         | 1,50         | 1,28         | 1,10         | 0,96         | 0,84         | 0,75         | 0,67         |
|                   |                   |                              | 2 | 8,64         | 6,00         | 4,41         | 3,14         | 2,21         | 1,61         | 1,21         | 0,93         | 0,73         | 0,59         | 0,48         | 0,39         | 0,33         | 0,28         |
| 0,75              | 0,073             | 0,97                         | 3 | 8,64         | 5,58         | 3,52         | 2,36         | 1,65         | 1,21         | 0,91         | 0,70         | 0,55         | 0,44         | 0,36         | 0,29         | 0,25         | 0,21         |
|                   |                   |                              | 4 | 8,43         | 3,72         | 2,34         | 1,57         | 1,10         | 0,80         | 0,60         | 0,47         | 0,37         | 0,29         | 0,24         | 0,20         | 0,16         | 0,14         |
|                   |                   |                              | 1 | 11,20        | 7,77         | 5,71         | 4,37         | 3,45         | 2,80         | 2,31         | 1,94         | 1,65         | 1,43         | 1,24         | 1,09         | 0,97         | 0,86         |
|                   |                   |                              | 2 | 11,20        | 7,77         | 5,71         | 3,90         | 2,74         | 2,00         | 1,50         | 1,16         | 0,91         | 0,73         | 0,59         | 0,49         | 0,41         | 0,34         |
| 0,88              | 0,085             | 2,65                         | 3 | 11,20        | 6,93         | 4,37         | 2,92         | 2,05         | 1,50         | 1,13         | 0,87         | 0,68         | 0,55         | 0,44         | 0,37         | 0,30         | 0,26         |
|                   |                   |                              | 4 | 7,99         | 4,62         | 2,91         | 1,95         | 1,37         | 1,00         | 0,75         | 0,58         | 0,45         | 0,36         | 0,30         | 0,24         | 0,20         | 0,17         |

| ZWEII                     | FELDTRÄG                       | ER                           |   |                  |                   | a                  | шШЩ       |             |          |                             |                    |          |      |      |      |      |      |
|---------------------------|--------------------------------|------------------------------|---|------------------|-------------------|--------------------|-----------|-------------|----------|-----------------------------|--------------------|----------|------|------|------|------|------|
| Blech-<br>dicke t<br>[mm] | Eigen-<br>gewicht<br>a [kN/m²] | Grenz-<br>stützweite<br> [m] |   | Zulässig<br>1.00 | e Belastu<br>1.20 | ngg[kN/r<br>  1,40 | n²]einsch | II. Blechei | gengewic | : <b>htbeiein</b><br>  2,20 | erStützw<br>  2,40 | eiteL[m] | 2,80 | 3.00 | 3,20 | 3.40 | 3,60 |
| junuj                     | I d I KIN/ m-1                 | 1111111                      | 1 | 3.73             | 2.79              | 2.17               | 1,71      | 1.35        | 1.10     | 0.91                        | 0.76               | 0,65     | 0,56 | 0.49 | 0.43 | 0.38 | 0,34 |
|                           |                                |                              | 2 | 3,73             | 2,79              | 2,17               | 1.71      | 1.35        | 1,10     | 0,91                        | 0,76               | 0,65     | 0,56 | 0,49 | 0,43 | 0.38 | 0,34 |
| 0.50                      | 0.048                          | 0.30                         | 3 | 3.73             | 2.79              | 2.17               | 1.71      | 1.35        | 1.10     | 0,91                        | 0.76               | 0.65     | 0.56 | 0.49 | 0,41 | 0.34 | 0,29 |
| -,                        | 5,5 15                         |                              | 4 | 3,73             | 2,79              | 2,17               | 1,71      | 1,35        | 1,10     | 0,83                        | 0,64               | 0,51     | 0,40 | 0,33 | 0,27 | 0,23 | 0,19 |
|                           |                                | 1                            | 1 | 5,99             | 4,50              | 3,34               | 2,55      | 2,02        | 1,63     | 1,35                        | 1,14               | 0,97     | 0,83 | 0,73 | 0,64 | 0,57 | 0,50 |
|                           |                                |                              | 2 | 5,99             | 4,50              | 3,34               | 2,55      | 2,02        | 1,63     | 1,35                        | 1,14               | 0,97     | 0,83 | 0,73 | 0,64 | 0,57 | 0,50 |
| 0,63                      | 0,061                          | 0,79                         | 3 | 5,99             | 4,50              | 3,34               | 2,55      | 2,02        | 1,63     | 1,35                        | 1,14               | 0,97     | 0,83 | 0,68 | 0,56 | 0,47 | 0,39 |
|                           |                                |                              | 4 | 5,99             | 4,50              | 3,34               | 2,55      | 2,02        | 1,53     | 1,15                        | 0,88               | 0,69     | 0,56 | 0,45 | 0,37 | 0,31 | 0,26 |
|                           |                                |                              | 1 | 8,14             | 6,00              | 4,41               | 3,38      | 2,67        | 2,16     | 1,79                        | 1,50               | 1,28     | 1,10 | 0,96 | 0,84 | 0,75 | 0,67 |
|                           |                                |                              | 2 | 8,14             | 6,00              | 4,41               | 3,38      | 2,67        | 2,16     | 1,79                        | 1,50               | 1,28     | 1,10 | 0,96 | 0,84 | 0,75 | 0,66 |
| 0,75                      | 0,073                          | 1,21                         | 3 | 8,14             | 6,00              | 4,41               | 3,38      | 2,67        | 2,16     | 1,79                        | 1,50               | 1,28     | 1,06 | 0,86 | 0,71 | 0,59 | 0,50 |
|                           |                                |                              | 4 | 8,14             | 6,00              | 4,41               | 3,38      | 2,66        | 1,94     | 1,46                        | 1,12               | 0,88     | 0,71 | 0,57 | 0,47 | 0,39 | 0,33 |
|                           |                                |                              | 1 | 10,80            | 7,77              | 5,71               | 4,37      | 3,45        | 2,80     | 2,31                        | 1,94               | 1,65     | 1,43 | 1,24 | 1,09 | 0,97 | 0,86 |
|                           | 1                              | 1                            | 2 | 10,80            | 7,77              | 5,71               | 4,37      | 3,45        | 2,80     | 2,31                        | 1,94               | 1,65     | 1,43 | 1,24 | 1,09 | 0,97 | 0,82 |
| 0,88                      | 0,085                          | 3,31                         | 3 | 10,80            | 7,77              | 5,71               | 4,37      | 3,45        | 2,80     | 2,31                        | 1,94               | 1,64     | 1,31 | 1,07 | 0,88 | 0,73 | 0,62 |
|                           | 1                              | 1                            | 4 | 10,80            | 7,77              | 5,71               | 4,37      | 3,30        | 2,40     | 1,81                        | 1,39               | 1,09     | 0,88 | 0,71 | 0,59 | 0,49 | 0,41 |

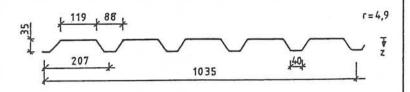
| DREIF                     | ELDTRÄGE                       | ER                   |     |                  |                   | a [[               |              |              |              |                    |                    |              |              |              |              |              |              |
|---------------------------|--------------------------------|----------------------|-----|------------------|-------------------|--------------------|--------------|--------------|--------------|--------------------|--------------------|--------------|--------------|--------------|--------------|--------------|--------------|
| Blech-<br>dicke t<br>[mm] | Eigen-<br>gewicht<br>a [kN/m²] | Grenz-<br>stützweite |     | Zulässig<br>1.00 | e Belastu<br>1.20 | ngg[kN/r<br>  1.40 | n²]einsch    | II. Blechei  | gengewic     | htbeiein<br>  2.20 | erStützw<br>I 2.40 | eiteL[m]     | 2.80         | 3.00         | 3.20         | 3.40         | 1 3.60       |
|                           |                                |                      | 1   | 4,39             | 3,05              | 2,24               | 1,71         | 1,35         | 1,10         | 0,92               | 0,78               | 0,68         | 0,59         | 0,52         | 0,46         | 0,41         | 0,37         |
| 0,50                      | 0,048                          | 0,30                 | 3   | 4,39<br>4,39     | 3,05<br>3,05      | 2,24<br>2,24       | 1,71<br>1,71 | 1,35<br>1,35 | 1,10<br>1,10 | 0,92<br>0,92       | 0,78<br>0,76       | 0,68<br>0,59 | 0,59<br>0,48 | 0,52<br>0,39 | 0,42<br>0,32 | 0,35<br>0,27 | 0,30<br>0,22 |
|                           | +                              | +                    | 1   | 4,39<br>6,54     | 3,05<br>4,54      | 2,24<br>3,34       | 1,70<br>2,59 | 1,19<br>2,12 | 0,87<br>1,77 | 0,65<br>1,49       | 0,50<br>1,28       | 0,40<br>1,11 | 0,32         | 0,26         | 0,21         | 0,18         | 0,15         |
| 0.63                      | 0.061                          | 0.70                 | 2   | 6,54             | 4,54              | 3,34               | 2,59         | 2,12         | 1,77<br>1.77 | 1,49               | 1,28               | 1,09         | 0,87         | 0,71         | 0,58         | 0,49         | 0,41         |
| 0,63                      | 0,061                          | 0,79                 | 4   | 6,54<br>6,54     | 4,54<br>4,54      | 3,34<br>3,34       | 2,59<br>2,34 | 2,12<br>1,64 | 1,77         | 1,35<br>0,90       | 1,04<br>0,69       | 0,82<br>0,54 | 0,65<br>0,44 | 0,53<br>0,35 | 0,44<br>0,29 | 0,37<br>0,24 | 0,31<br>0,21 |
|                           |                                |                      | 1 2 | 8,64<br>8.64     | 6,00<br>6,00      | 4,41<br>4,41       | 3,49<br>3.49 | 2,85<br>2.85 | 2,37<br>2.37 | 2,00<br>2.00       | 1,71<br>1,71       | 1,47<br>1,38 | 1,29<br>1,11 | 1,13<br>0.90 | 1,00<br>0.74 | 0,89<br>0.62 | 0,80<br>0,52 |
| 0,75                      | 0,073                          | 1,21                 | 3   | 8,64<br>8,64     | 6,00<br>6,00      | 4,41<br>4,41       | 3,49<br>2.96 | 2,85<br>2.08 | 2,28<br>1.52 | 1,71<br>1,14       | 1,32<br>0,88       | 1,04<br>0.69 | 0,83<br>0.55 | 0,67<br>0.45 | 0,56<br>0.37 | 0,46<br>0.31 | 0,39<br>0,26 |
|                           |                                | +                    | 1   | 11,20            | 7,77              | 5,80               | 4,63         | 3,78         | 3,14         | 2,64               | 2,25               | 1,95         | 1,69         | 1,49         | 1,32         | 1,17         | 1,05         |
| 0.88                      | 0.085                          | 3.31                 | 2   | 11,20<br>11.20   | 7,77<br>7.77      | 5,80<br>5,80       | 4,63<br>4,63 | 3,78<br>3.78 | 3,14<br>2,83 | 2,64<br>2,12       | 2,18<br>1,64       | 1,72<br>1,29 | 1,37<br>1.03 | 1,12<br>0.84 | 0,92<br>0.69 | 0,77<br>0,58 | 0,65<br>0,48 |
| 0,00                      | 3,003                          | ] 3,31               | 4   | 11,20            | 7,77              | 5,50               | 3,68         | 2,59         | 1,88         | 1,42               | 1,09               | 0,86         | 0,69         | 0,56         | 0,46         | 0,38         | 0,32         |

Zeile 1 = Ohne Beschränkung der Durchbiegung

Zeile 2 = Zulässige Belastung bei einer Durchbiegung von f<= L/150 Zeile 3 = Zulässige Belastung bei einer Durchbiegung von f<= L/200

Zeile 4 = Zulässige Belastung bei einer Durchbiegung von f<= L/300

Endauflagerbreite a>=40 mm Zwischenauflagerbreite b>=60mm I = Grenzstützweite, bis zu der das Trapezprofil als tragendes Bauelement von Dach- und Deckensystemen ohne Laufbohlen verwendet werden darf.




PP - Prof 35 - 207

Querschnitts- und Bemessungswerte nach DIN 18807

Profiltafel in POSITIVLAGE

Maße in [mm]



#### Anlage 3.1 zum Prüfbescheid Als Typenentwurf

in bautechnischer Hinsicht geprüft Prüfbescheid Nr. II B6-543-160

Ministerium für Bauen und Wohnen - PRÜFAMT FÜR BAUSTATIK -

Düsseldorf, den 7.10.1994 Im Auftrag

Der Bearbeiter

Tuloufolde Wordthein-Westfelen

Nennstreckgrenze des Stahlkerns  $\beta_{S.N} = 320 \text{ N/mm}^2$ 

| Maßgebende | Querschnittswerte |
|------------|-------------------|
|            |                   |

| Eigen-                           | Biego                                           | ung 1)                                                                    |                                     | Norr                                                                                                                       | nalkraftb                                                                                                                                                           | eanspruch                              | nung                         |                              | Grenzst                                                                                                                  | ützweiten <sup>3)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|----------------------------------|-------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                  |                                                 | 0 <del>5</del> 0                                                          | nich                                | t reduzie                                                                                                                  | rter                                                                                                                                                                | m                                      | itwirkend                    | er                           |                                                                                                                          | l <sub>gr</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (82880)                          |                                                 |                                                                           | C                                   | uerschni                                                                                                                   | tt                                                                                                                                                                  | Qı                                     | uerschnit                    | t <sup>2)</sup>              | Einfeld-                                                                                                                 | Mehrfeld-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| g<br>[kN/m²]                     | l + ef [cm <sup>4</sup> /m]                     | l ef [cm <sup>4</sup> /m]                                                 | A <sub>g</sub> [cm <sup>2</sup> /m] | i <sub>g</sub><br>[cm]                                                                                                     | Z <sub>g</sub><br>[cm]                                                                                                                                              | A <sub>ef</sub> [cm <sup>2</sup> /m]   | i <sub>ef</sub><br>[cm]      | Z <sub>ef</sub><br>[cm]      | träger<br>[m]                                                                                                            | träger<br>[m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0,048<br>0,061<br>0,072<br>0,085 | 6,86<br>9,43<br>12,0<br>14,9                    | 8,57<br>12,6<br>15,9<br>19,8                                              | 5,42<br>6,95<br>8,36<br>9,90        | 1,42<br>1,42<br>1,42<br>1,42                                                                                               | 1,18<br>1,18<br>1,18<br>1,18                                                                                                                                        | 1,79<br>2,86<br>4,01<br>5,43           | 1,57<br>1,54<br>1,51<br>1,49 | 1,71<br>1,70<br>1,68<br>1,67 | _ 8)<br>_ 8)<br>0,97<br>2,65                                                                                             | _8)<br>_8)<br>1,21<br>3,31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                  | [kN/m <sup>2</sup> ]<br>0,048<br>0,061<br>0,072 | g   f ef   [kN/m²]   [cm⁴/m]   0,048   6,86   0,061   9,43   0,072   12,0 | g l + l - l - g                     | last nich  g I ef I ef Ag  [kN/m²] [cm⁴/m] [cm⁴/m] [cm²/m]  0,048 6,86 8,57 5,42 0,061 9,43 12,6 6,95 0,072 12,0 15,9 8,36 | last nicht reduzie Querschni  g I ef I ef Ag ig [kN/m²] [cm⁴/m] [cm²/m] [cm²/m] [cm]  0,048 6,86 8,57 5,42 1,42 0,061 9,43 12,6 6,95 1,42 0,072 12,0 15,9 8,36 1,42 | last   nicht reduzierter   Querschnitt | last                         | last                         | Biegung 1)   Normalkraftbeanspruchung   nicht reduzierter   mitwirkender   Querschnitt   Querschnitt <sup>2)</sup>     g | Second   S |

#### Schubfeldwerte

|                              |                                  |                              |                              | zul T <sub>3</sub>           | $= G_{S}/750 [kN]$                               | N/m]                                            |                              | zul          | F <sub>t</sub> 7)            |
|------------------------------|----------------------------------|------------------------------|------------------------------|------------------------------|--------------------------------------------------|-------------------------------------------------|------------------------------|--------------|------------------------------|
|                              |                                  |                              |                              |                              | G <sub>S</sub> =10 <sup>4</sup> /(K <sub>1</sub> | +K <sub>2</sub> /L <sub>S</sub> ) <sup>4)</sup> |                              | Einleitun    | gslänge a                    |
| t <sub>N</sub>               | min L <sub>S</sub> <sup>4)</sup> | zul T <sub>1</sub>           | zul T <sub>2</sub>           | L <sub>G</sub> <sup>5)</sup> | K <sub>1</sub>                                   | K <sub>2</sub>                                  | K <sub>3</sub> <sup>6)</sup> | ≥130 mm      | ≥280 mm                      |
| [mm]                         | [m]                              | [kN/m]                       | [kN/m]                       | [m]                          | [m/kN]                                           | [m <sup>2</sup> /kN]                            | [-]                          | Einleitu     | [kN]                         |
| Ausfühi                      | rung nach D                      | IN 18 807 T                  | eil 3, Bild 6                |                              |                                                  |                                                 |                              |              | ,                            |
| 0,50<br>0,63<br>0,75<br>0,88 | 2,06<br>1,82<br>1,66<br>1,53     | 1,27<br>1,85<br>2,44<br>3,14 | 1,22<br>2,27<br>3,61<br>5,50 | 2,06<br>1,82<br>1,66<br>1,53 | 0,317<br>0,247<br>0,205<br>0,174                 | 19,42<br>10,42<br>6,561<br>4,310                | 0,15<br>0,17<br>0,19<br>0,20 | 5,40<br>6,50 | 6,49<br>8,32<br>10,0<br>11,8 |
| Ausfühi                      | rung nach D                      | IN 18 807 T                  | eil 3, Bild 7                | 2                            |                                                  |                                                 |                              |              |                              |
| 0,50<br>0,63<br>0,75<br>0,88 | 2,10<br>1,85<br>1,69<br>1,55     | 2,09<br>3,04<br>4,02<br>5,17 | 1,16<br>2,16<br>3,43<br>5,23 | 2,87<br>2,25<br>1,88<br>1,60 | 0,317<br>0,247<br>0,205<br>0,174                 | 17,34<br>9,307<br>5,858<br>3,848                | 0,24<br>0,24<br>0,24<br>0,24 | 5,40<br>6,50 | 6,49<br>8,32<br>10,0<br>11,8 |

- Effektive Trägheitsmomente für Lastrichtung nach unten (+) bzw. oben (-). 1)
- Mitwirkender Querschnitt für eine konstante Druckspannung  $\sigma = \beta_{S.N}$ . 2)
- Maximale Stützweiten, bis zu denen das Trapezprofil als tragendes Bauteil von 3) Dach- und Deckensystemen verwendet werden darf.
- Bei Schubfeldlängen  $L_S < \min L_S$  müssen die zulässigen Schubflüsse reduziert werden. 4)
- Bei Schubfeldlängen  $L_S > L_G$  ist zul  $T_3$  nicht maßgebend. 5)
- Auflager-Kontaktkräfte  $R_B = K_3 \cdot \gamma \cdot T$ ; (T = vorhandener Schubfluß in [kN/m]) 6)
- Einzellast gemäß DIN 18807 Teil 3, Abschnitt 3.6.1.5. 7)
- Als tragendes Bauteil in Dach- und Deckensystemen nicht zugelassen. 8)

PP - Prof 35 - 207

Querschnitts- und Bemessungswerte nach DIN 18807, Teil 1

Profiltafel in POSITIVLAGE Anlage 3.2 zum Prüfbescheid Als Typenentwurf

in bautechnischer Hinsicht geprüft Prüfbescheid Nr. II B6-543-160

Ministerium für Bauen und Wohnen - PRÜFAMT FÜR BAUSTATIK -

Düsseldorf, den 7.10.1994

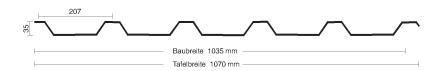
| Nenn-           | Feld-           |                                    | uflager-<br>räfte       | Elas<br>grö      | stisch aufne<br>3en an Zwi                                                 | ehmbare Sc<br>schenauflag     | hnitt-<br>jern <sup>5)</sup>                | F                                               | Reststützmome                 | nte <sup>o)</sup>  |  |
|-----------------|-----------------|------------------------------------|-------------------------|------------------|----------------------------------------------------------------------------|-------------------------------|---------------------------------------------|-------------------------------------------------|-------------------------------|--------------------|--|
| blech-<br>dicke | moment          | Trag-<br>fähigkeit                 | Gebrauchs-<br>fähigkeit | 1                | axM <sub>B.≥</sub> M <sub>B</sub><br>M <sup>o</sup> d - (R <sub>B</sub> /C |                               |                                             | MR= -                                           | ) für I < min<br> - min I<br> |                    |  |
|                 |                 |                                    |                         |                  |                                                                            | maximales<br>Stütz-<br>moment | maximale<br>Zwischen-<br>auflager-<br>kraft | M <sub>R</sub> = max M <sub>R</sub> fürl> max l |                               |                    |  |
| t <sub>N</sub>  | M <sub>dF</sub> | R <sub>A,T</sub>                   | R <sub>A,G</sub>        | M <sup>0</sup> d | С                                                                          | max M <sub>B</sub>            | max R <sub>B</sub>                          | min I                                           | max I                         | max M <sub>R</sub> |  |
| [mm]            | [kNm/m]         | [kN/m]                             | [kN/m]                  | [kNm/m]          | [kN <sup>1/2</sup> /m]                                                     | [kNm/m]                       | [kN/m]                                      | [m]                                             | [m]                           | [kNm/m]            |  |
|                 |                 | <sup>2)3)</sup> b <sub>A</sub> ≥ 4 | 0 mm                    | 3) Zwisch        | enauflage                                                                  | rbreite b <sub>B.</sub> >     | 60 mm, ∈=                                   | 2, [C]                                          | = kN <sup>1/2</sup> /m        |                    |  |
| 0,50            | 0,93            | 4,35                               | 4,35                    | 0,85             | 12,3                                                                       | 0,85                          | 10,1                                        |                                                 |                               |                    |  |
| 0,63            | 1,39            | 6,81                               | 6,81                    | 1,40             | 14,9                                                                       | 1,40                          | 15,8                                        | 1                                               |                               |                    |  |
| 0,75            | 1,84            | 9,59                               | 9,59                    | 1,85             | 18,2                                                                       | 1,85                          | 22,1                                        |                                                 |                               |                    |  |
| 0,88            | 2,38            | 13,1                               | 13,1                    | 2,43             | 21,5                                                                       | 2,43                          | 30,0                                        |                                                 |                               |                    |  |
|                 |                 |                                    |                         |                  | 1                                                                          |                               |                                             |                                                 |                               |                    |  |
|                 | 1               | 2)4)b <sub>A</sub> ≥ 4             | 0 mm                    | 4) Zwisch        | enauflage                                                                  | rbreite b <sub>B.</sub> >     | 160 mm, ε                                   | = 2, [C]                                        | $= kN^{1/2}/m$                |                    |  |
| 0,50            | 0,93            | 4,35                               | 4,35                    | 0,85             | 18,2                                                                       | 0,85                          | 15,0                                        |                                                 |                               |                    |  |
| 0,63            | 1,39            | 6,81                               | 6,81                    | 1,40             | 21,9                                                                       | 1,40                          | 23,2                                        |                                                 |                               |                    |  |
| 0,75            | 1,84            | 9,59                               | 9,59                    | 1,85             | 26,5                                                                       | 1,85                          | 32,2                                        |                                                 |                               |                    |  |
| 0,88            | 2,38            | 13,1                               | 13,1                    | 2,43             | 31,1                                                                       | 2,43                          | 43,4                                        |                                                 |                               |                    |  |

Aufnehmbare Trägfähigkeitswerte für nach oben gerichtete und abhebende Flächen-Belastung 1) 6)

| Nenn-                        | Feld-                        | Befes                        | tigung in je                 | dem anl                      | iegenden G                        | aurt                          | Befestig                     | gung in jede                 | em 2. an                     | liegenden                    | Gurt                         |
|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|-----------------------------------|-------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| blech-<br>dicke              | moment                       | Endauf-<br>lager             | Zwis                         | schenau                      | flager <sup>5)</sup> , $\epsilon$ | = 1                           | Endauf-<br>lager             | Zwis                         | chenau                       | flager <sup>5)</sup> , ∈ :   | = 1                          |
| t <sub>N</sub>               | M <sub>dF</sub><br>[kNm/m]   | R <sub>A</sub> [kN/m]        | M <sup>0</sup> d<br>[kNm/m]  | C<br>[1/m]                   | max M <sub>B</sub> [kNm/m]        | max R <sub>B</sub> [kN/m]     | R <sub>A</sub><br>[kN/m]     | M <sup>0</sup> d<br>[kNm/m]  | C<br>[1/m]                   | max M <sub>B</sub> [kNm/m]   | max R <sub>B</sub><br>[kN/m] |
| 0,50<br>0,63<br>0,75<br>0,88 | 0,85<br>1,40<br>1,85<br>2,43 | 19,4<br>31,8<br>46,1<br>60,9 | 1,21<br>1,81<br>2,39<br>3,09 | 41,5<br>45,8<br>50,2<br>51,2 | 0,93<br>1,39<br>1,84<br>2,38      | 38,7<br>63,7<br>92,2<br>121,8 | 9,68<br>15,9<br>23,1<br>30,5 | 0,61<br>0,90<br>1,19<br>1,55 | 41,5<br>45,8<br>50,2<br>51,2 | 0,47<br>0,69<br>0,92<br>1,19 | 19,4<br>31,8<br>46,1<br>60,9 |

1) An den Stellen von Linienlasten quer zur Spannrichtung und von Einzellasten ist der Nachweis nicht mit dem Feldmoment M<sub>dF</sub>, sondern mit dem Stützmoment M<sub>B</sub> für die entgegengesetzte Lastrichtung zu führen.

2) b<sub>A</sub> = Endauflagerbreite.Bei einem Profiltafelüberstand ü≥50 mm dürfen die R<sub>A</sub>-Werte um 20% erhöht werden.


3) Für kleinere Auflagerbreiten muß zwischen den angegebenen aufnehmbaren Tragfähigkeitswerten und denen bei 10 mm Auflagerbreite linear interpoliert werden. Für Auflagerbreiten kleiner als 10 mm, z.B. bei Rohren, darf maximal 10 mm eingesetzt werden.

4) Bei Auflagerbreiten, die zwischen den aufgeführten Werten liegen, dürfen die aufnehmbaren Tragfähig Nordrhein- Westfale

keitswerte jeweils linear interpoliert werden.

5) Interaktionsbeziehung für  $M_B$  und  $R_B$ :  $M_B = M_d^0 - (R_B/C)^{\epsilon}$ . Sind keine Werte für  $M_d^0$  und C angegeben, ist  $M_B = max M_B zu$  setzen.

6) Sind keine Werte für die Reststützmomente angegeben, ist beim Tragsicherheitsnachweis  $M_{\mathsf{R}}$  = setzen, oder ein Nachweis mit γ = 1,7 nach der Elastizitätstheorie zu führen. (I = kleinere der benachbarten Stützweiten).



Belastungstabellen nach DIN 18 807. Die Werte im Rasterfeld gelten für tragende Dachsysteme

|                   | tabelleli liacii biiv |                      |     | usterrera v  | quiteri iui  | trageriae    | Duchsys      | ciric.       |              |              |              |              |              |              |              |              |              |
|-------------------|-----------------------|----------------------|-----|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| EINFE             | LDTRÄGER              |                      |     |              |              | 10           | amafii       | шшш          | m.           |              |              |              |              |              |              |              |              |
| Blech-<br>dicke t | Eigen-<br>gewicht     | Grenz-<br>stützweite |     |              |              |              |              |              |              |              | erStützw     |              |              |              |              |              |              |
| [mm]              | a [kN/m²]             | [I[m]                |     | 1,00         | 1,20         | 1,40         | 1,60         | 1,80         | 2,00         | 2,20         | 2,40         | 2,60         | 2,80         | 3,00         | 3,20         | 3,40         | 3,60         |
|                   |                       |                      | 1 2 | 4,00<br>4,00 | 2,78<br>2,78 | 2,04<br>2,04 | 1,78<br>1.78 | 1,23<br>1,23 | 1,00<br>1,00 | 0,83<br>0,83 | 0,69<br>0,67 | 0,59<br>0,52 | 0,51<br>0,42 | 0,44<br>0,34 | 0,39<br>0,28 | 0,35<br>0.23 | 0,31<br>0,20 |
| 0,50              | 0,048                 | 0,39                 | 3   | 4,00         | 2,78         | 2,04         | 1,78         | 1,18         | 0,86         | 0,65         | 0,50         | 0,39         | 0,31         | 0,26         | 0,21         | 0,18         | 0,15         |
|                   |                       |                      | 4   | 4,00         | 2,67         | 1,68         | 1,37         | 0,79         | 0,58         | 0,43         | 0,33         | 0,26         | 0,21         | 0,17         | 0,14         | 0,12         | 0,10         |
|                   |                       |                      | 1   | 6,59         | 4,58         | 3,36         | 2,93         | 2,03         | 1,65         | 1,36         | 1,14         | 0,97         | 0,84         | 0,73         | 0,64         | 0,57         | 0,51         |
|                   |                       |                      | 2   | 6,59         | 4,58         | 3,36         | 2,93         | 2,03         | 1,65         | 1,27         | 0,98         | 0,77         | 0,61         | 0,50         | 0,41         | 0,34         | 0,29         |
| 0,63              | 0,061                 | 1,06                 | 3   | 6,59         | 4,58         | 3,36         | 2,93         | 1,74         | 1,27         | 0,95         | 0,73         | 0,58         | 0,46         | 0,37         | 0,31         | 0,26         | 0,22         |
|                   |                       |                      | 4   | 6,59         | 3,91         | 2,46         | 2,00         | 1,16         | 0,84         | 0,63         | 0,49         | 0,38         | 0,31         | 0,25         | 0,21         | 0,17         | 0,14         |
|                   |                       |                      | 1   | 8,71         | 6,05         | 4,44         | 3,87         | 2,69         | 2,18         | 1,80         | 1,51         | 1,29         | 1,11         | 0,97         | 0,85         | 0,75         | 0,67         |
|                   |                       |                      | 2   | 8,71         | 6,05         | 4,44         | 3,87         | 2,69         | 2,14         | 1,61         | 1,24         | 0,97         | 0,78         | 0,63         | 0,52         | 0,44         | 0,37         |
| 0,75              | 0,073                 | 1,56                 | 3   | 8,71         | 6,05         | 4,44         | 3,81         | 2,20         | 1,61         | 1,21         | 0,93         | 0,73         | 0,59         | 0,48         | 0,39         | 0,33         | 0,28         |
|                   |                       |                      | 4   | 8,56         | 4,96         | 3,12         | 2,54         | 1,47         | 1,07         | 0,80         | 0,62         | 0,49         | 0,39         | 0,32         | 0,26         | 0,22         | 0,18         |
|                   |                       |                      | 1   | 11,4         | 7,94         | 5,83         | 4,47         | 3,53         | 2,86         | 2,36         | 1,98         | 1,69         | 1,46         | 1,27         | 1,12         | 0,99         | 0,88         |
|                   |                       |                      | 2   | 11,44        | 7,94         | 5,83         | 4,47         | 3,53         | 2,66         | 2,00         | 1,54         | 1,21         | 0,97         | 0,79         | 0,65         | 0,54         | 0,46         |
| 0,88              | 0,085                 | 2,84                 | 3   | 11,44        | 7,94         | 5,81         | 3,89         | 2,73         | 1,99         | 1,50         | 1,15         | 0,91         | 0,73         | 0,59         | 0,49         | 0,41         | 0,34         |
|                   |                       |                      | 4   | 10,6         | 6,15         | 3,87         | 2,59         | 1,82         | 1,33         | 1,00         | 0,77         | 0,60         | 0,48         | 0,39         | 0,32         | 0,27         | 0,23         |

| ZWEIF                     | ELDTRÄGI                        | ER                          |                  |                                      |                                      |                                      |                              |                              |                              |                              |                              |                              |                                      |                                      |                                      |                              |                                      |
|---------------------------|---------------------------------|-----------------------------|------------------|--------------------------------------|--------------------------------------|--------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|------------------------------|--------------------------------------|
| Blech-<br>dicke t<br>[mm] | Eigen-<br>gewicht<br>g [KIV/m²] | Grenz-<br>stützweite<br>  m |                  | Zulässig<br>1.00                     | e Belastu                            | <b>ngq[kN/r</b><br>l 1.40            | n²]einsch                    | II. Blechei                  | gengewic                     | :htbeiein<br>I 2.20          | erStützw<br>I 2.40           | eite L [m]                   | 1 2.80                               | 1 3.00                               | 1 3.20                               | 1 3.40                       | 3,60                                 |
| 0,50                      | 0,048                           | 0,49                        | 1<br>2<br>3<br>4 | 3,92<br>3,92<br>3,92<br>3,92<br>3,92 | 2,78<br>2,78<br>2,78<br>2,78<br>2,78 | 2,04<br>2,04<br>2,04<br>2,04<br>2,04 | 1,56<br>1,56<br>1,56<br>1,56 | 1,23<br>1,23<br>1,23<br>1,23 | 1,00<br>1,00<br>1,00<br>1,00 | 0,83<br>0,83<br>0,83<br>0,83 | 0,69<br>0,69<br>0,69<br>0,69 | 0,59<br>0,59<br>0,59<br>0,59 | 0,52<br>0,52<br>0,52<br>0,52<br>0,51 | 0,40<br>0,40<br>0,40<br>0,40<br>0,34 | 0,40<br>0,40<br>0,40<br>0,40<br>0,34 | 0,36<br>0,36<br>0,36<br>0,28 | 0,32<br>0,32<br>0,32<br>0,32<br>0,24 |
| 0,63                      | 0,061                           | 1,33                        | 1<br>2<br>3<br>4 | 5,97<br>5,97<br>5,97<br>5,97         | 4,48<br>4,48<br>4,48<br>4,48         | 3,36<br>3,36<br>3,36<br>3,36         | 2,57<br>2,57<br>2,57<br>2,57 | 2,03<br>2,03<br>2,03<br>2,03 | 1,65<br>1,65<br>1,65<br>1,65 | 1,36<br>1,36<br>1,36<br>1,36 | 1,14<br>1,14<br>1,14<br>1,14 | 0,97<br>0,97<br>0,97<br>0,93 | 0,84<br>0,84<br>0,84<br>0,74         | 0,64<br>0,64<br>0,64<br>0,50         | 0,64<br>0,64<br>0,64<br>0,50         | 0,57<br>0,57<br>0,57<br>0,41 | 0,51<br>0,51<br>0,51<br>0,35         |
| 0,75                      | 0,073                           | 1,95                        | 1<br>2<br>3<br>4 | 8,10<br>8,10<br>8,10<br>8,10         | 6,05<br>6,05<br>6,05<br>6,05         | 4,44<br>4,44<br>4,44<br>4,44         | 3,40<br>3,40<br>3,40<br>3,40 | 2,69<br>2,69<br>2,69<br>2,69 | 2,18<br>2,18<br>2,18<br>2,18 | 1,80<br>1,80<br>1,80<br>1,80 | 1,51<br>1,51<br>1,51<br>1,49 | 1,29<br>1,29<br>1,29<br>1,17 | 1,11<br>1,11<br>1,11<br>0,94         | 0,85<br>0,85<br>0,85<br>0,63         | 0,85<br>0,85<br>0,85<br>0,63         | 0,75<br>0,75<br>0,75<br>0,52 | 0,67<br>0,67<br>0,66<br>0,44         |
| 0,88                      | 0,085                           | 3,55                        | 1<br>2<br>3<br>4 | 10,7<br>10,7<br>10,7<br>10,7         | 7,94<br>7,94<br>7,94<br>7,94         | 5,83<br>5,83<br>5,83<br>5,83         | 4,47<br>4,47<br>4,47<br>4,47 | 3,53<br>3,53<br>3,53<br>3,53 | 2,86<br>2,86<br>2,86<br>2,86 | 2,36<br>2,36<br>2,36<br>2,36 | 1,98<br>1,98<br>1,98<br>1,85 | 1,69<br>1,69<br>1,69<br>1,46 | 1,46<br>1,46<br>1,46<br>1,17         | 1,12<br>1,12<br>1,12<br>0,78         | 1,12<br>1,12<br>1,12<br>0,78         | 0,99<br>0,99<br>0,98<br>0,65 | 0,88<br>0,88<br>0,82<br>0,55         |

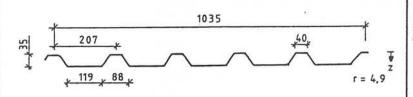
| DREIF                     | ELDTRÄGE                       | :R                           |                  |                                      |                                      | 4                                    | ambia                        |                              | iiiniiiii                    | amaini ji                    |                              |                                      |                              |                              |                                      |                              |                              |
|---------------------------|--------------------------------|------------------------------|------------------|--------------------------------------|--------------------------------------|--------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|--------------------------------------|------------------------------|------------------------------|--------------------------------------|------------------------------|------------------------------|
| Blech-<br>dicke t<br>[mm] | Eigen-<br>gewicht<br>a [kN/m²] | Grenz-<br>stützweite<br>[[m] |                  | Zulässig<br>1.00                     | e Belastui<br>1.20                   | ngq[kN/r<br>  1.40                   | n²]einsch                    | I. Blechei                   | gengewic                     | htbeiein<br>1 2.20           | erStützw<br>  2.40           | eite L[m]                            | 1 2.80                       | 3.00                         | 3.20                                 | 3.40                         | 3,60                         |
| 0,50                      | 0,048                          | 0,49                         | 1<br>2<br>3<br>4 | 4,00<br>4,00<br>4,00<br>4,00<br>4,00 | 2,78<br>2,78<br>2,78<br>2,78<br>2,78 | 2,12<br>2,12<br>2,12<br>2,12<br>2,12 | 1,71<br>1,71<br>1,71<br>1,71 | 1,40<br>1,40<br>1,40<br>1,40 | 1,17<br>1,17<br>1,17<br>1,17 | 0,99<br>0,99<br>0,99<br>0,82 | 0,84<br>0,84<br>0,84<br>0,63 | 0,73<br>0,73<br>0,73<br>0,73<br>0,49 | 0,64<br>0,64<br>0,59<br>0,40 | 0,56<br>0,56<br>0,48<br>0,32 | 0,50<br>0,50<br>0,50<br>0,40<br>0,27 | 0,44<br>0,44<br>0,33<br>0,22 | 0,40<br>0,37<br>0,28<br>0,19 |
| 0,63                      | 0,061                          | 1,33                         | 1<br>2<br>3<br>4 | 6,59<br>6,59<br>6,59<br>6,59         | 4,58<br>4,58<br>4,58<br>4,58         | 3,36<br>3,36<br>3,36<br>3,36         | 2,58<br>2,58<br>2,58<br>2,58 | 2,11<br>2,11<br>2,11<br>2,11 | 1,76<br>1,76<br>1,76<br>1,59 | 1,49<br>1,49<br>1,49<br>1,20 | 1,27<br>1,27<br>1,27<br>0,92 | 1,10<br>1,10<br>1,09<br>0,73         | 0,96<br>0,96<br>0,87<br>0,58 | 0,84<br>0,84<br>0,71<br>0,47 | 0,75<br>0,75<br>0,58<br>0,39         | 0,67<br>0,65<br>0,49<br>0,32 | 0,60<br>0,55<br>0,41<br>0,27 |
| 0,75                      | 0,073                          | 1,95                         | 1<br>2<br>3<br>4 | 10,7<br>10,7<br>10,7<br>10,7         | 7,94<br>7,94<br>7,94<br>7,94         | 4,44<br>4,44<br>4,44<br>4,44         | 3,47<br>3,47<br>3,47<br>3,47 | 2,84<br>2,84<br>2,84<br>2,77 | 2,86<br>2,86<br>2,86<br>2,86 | 2,36<br>2,36<br>2,36<br>2,36 | 1,70<br>1,70<br>1,70<br>1,70 | 1,47<br>1,47<br>1,38<br>0,92         | 1,28<br>1,28<br>1,10<br>0,74 | 1,27<br>1,27<br>0,90<br>0,60 | 1,12<br>1,12<br>0,74<br>0,49         | 0,89<br>0,82<br>0,62<br>0,41 | 0,79<br>0,69<br>0,52<br>0,35 |
| 0,88                      | 0,085                          | 3,55                         | 1<br>2<br>3<br>4 | 11,4<br>11,44<br>11,44<br>11,44      | 7,94<br>7,94<br>7,94<br>7,94         | 5,83<br>5,83<br>5,83<br>5,83         | 4,56<br>4,56<br>4,56<br>4,56 | 3,72<br>3,72<br>3,72<br>3,44 | 3,08<br>3,08<br>3,08<br>2,51 | 2,60<br>2,60<br>2,60<br>1,88 | 2,21<br>2,21<br>2,18<br>1,45 | 1,91<br>1,91<br>1,71<br>1,14         | 1,66<br>1,66<br>1,37<br>0,91 | 1,46<br>1,46<br>1,11<br>0,74 | 1,29<br>1,22<br>0,92<br>0,61         | 1,15<br>1,02<br>0,77<br>0,51 | 1,03<br>0,86<br>0,64<br>0,43 |

Zeile 1 = Ohne Beschränkung der Durchbiegung

Zeile 2 = Zulässige Belastung bei einer Durchbiegung von f<= L/150 Zeile 3 = Zulässige Belastung bei einer Durchbiegung von f<= L/200

Zeile 4 = Zulässige Belastung bei einer Durchbiegung von f<= L/300

Endauflagerbreite a>=40 mm Zwischenauflagerbreite b>=60 mm I = Grenzstützweite, bis zu der das Trapezprofil als tragendes Bauelement von Dach- und Deckensystemen ohne Laufbohlen verwendet werden darf.




PP - Prof 35 - 207

Querschnitts- und Bemessungswerte nach DIN 18807

Profiltafel in NEGATIVLAGE

Maβe in [mm]



Anlage 3.3 zum Prüfbescheid Als Typenentwurf

in bautechnischer Hinsicht geprüft Prüfbescheid Nr. II B6-543-160

Ministerium für Bauen und Wohnen
- PRÜFAMT FÜR BAUSTATIK -

Düsseldorf, den 7.10.1994

m Auftrag Den Mullipuller R

Der Bearbeite



Nennstreckgrenze des Stahlkerns  $\beta_{S,N} = 320 \text{ N/mm}^2$ 

|                | Eigen-               | l Diedi              | ung <sup>1)</sup>    |                      | Norr      | nalkraftb |                      | Grenzstützweiten <sup>3</sup> |                 |          |           |
|----------------|----------------------|----------------------|----------------------|----------------------|-----------|-----------|----------------------|-------------------------------|-----------------|----------|-----------|
| blech-         | last                 |                      |                      | nich                 | t reduzie | rter      | m                    | itwirkend                     | er              |          | Igr       |
| dicke          |                      |                      |                      | C                    | uerschni  | tt        | Qı                   | uerschnit                     | t <sup>2)</sup> | Einfeld- | Mehrfeld- |
| t <sub>N</sub> | g                    | l +                  | l ef                 | Ag                   | ig        | Zg        | A <sub>ef</sub>      | i <sub>ef</sub>               | Zef             | träger   | träger    |
| goden.         | [kN/m <sup>2</sup> ] | [cm <sup>4</sup> /m] | [cm <sup>4</sup> /m] | [cm <sup>2</sup> /m] | [cm]      | [cm]      | [cm <sup>2</sup> /m] | [cm]                          | [cm]            | [m]      | [m]       |
| 0,50           | 0,048                | 8,57                 | 6,86                 | 5,42                 | 1,42      | 2,32      | 1,79                 | 1,57                          | 1,79            | _ 8)     | _ 8)      |
| 151,000,000    | 0,061                | 12,6                 | 9,43                 | 6,95                 | 1,42      | 2,32      | 2,86                 | 1,54                          | 1,80            | 1,06     | 1,33      |
| 20.000         | 0,072                | 15,9                 | 12,0                 | 8,36                 | 1,42      | 2,32      | 4,01                 | 1,51                          | 1,82            | 1,56     | 1,95      |
|                | 0,085                | 19,8                 | 14,9                 | 9,90                 | 1,42      | 2,32      | 5,43                 | 1,49                          | 1,83            | 2,84     | 3,55      |

|                              |                              |                              |                              | zul T                        | $_{3} = G_{S}/750  [k]$             | N/m]                                             |                              | zul                          | F <sub>t</sub> <sup>7)</sup> |
|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|-------------------------------------|--------------------------------------------------|------------------------------|------------------------------|------------------------------|
|                              |                              |                              |                              |                              | G <sub>S</sub> =10 <sup>4</sup> /(K | 1+K <sub>2</sub> /L <sub>S</sub> ) <sup>4)</sup> |                              | Einleitun                    | gslänge a                    |
| t <sub>N</sub>               | min L <sub>S</sub> 4)        | zul T <sub>1</sub>           | zul T <sub>2</sub>           | L <sub>G</sub> <sup>5)</sup> | K <sub>1</sub>                      | K <sub>2</sub>                                   | K <sub>3</sub> <sup>6)</sup> | ≥130 mm                      | ≥280 mm                      |
| [mm]                         | [m]                          | [kN/m]                       | [kN/m]                       | [m]                          | [m/kN]                              | [m <sup>2</sup> /kN]                             | [-]                          | [kN]                         | [kN]                         |
| Ausfüh                       | rung nach D                  | IN 18 807 T                  | eil 3, Bild 6                |                              |                                     |                                                  |                              |                              |                              |
| 0,50<br>0,63<br>0,75<br>0,88 | 2,20<br>1,94<br>1,77<br>1,63 | 2,19<br>3,17<br>4,19<br>5,39 | 1,51<br>2,82<br>4,48<br>6,81 | 2,96<br>2,33<br>1,95<br>1,65 | 0,317<br>0,247<br>0,205<br>0,174    | 17,14<br>9,201<br>5,792<br>3,804                 | 0,11<br>0,12<br>0,13<br>0,14 | 4,88<br>6,25<br>7,53<br>8,90 | 6,16<br>7,91<br>9,51<br>11,3 |
| Ausfüh                       | rung nach D                  | IN 18 807 T                  | eil 3, Bild 7                |                              |                                     |                                                  |                              |                              |                              |
| 0,50<br>0,63<br>0,75<br>0,88 | 1,10<br>0,97<br>0,89<br>0,82 | 5,40<br>7,84<br>10,4<br>13,3 | 5,58<br>10,4<br>16,5<br>25,1 | 1,10<br>0,97<br>0,89<br>0,82 | 0,317<br>0,247<br>0,205<br>0,174    | 1,213<br>0,651<br>0,410<br>0,269                 | 0,43<br>0,43<br>0,43<br>0,43 | 4,88<br>6,25<br>7,53<br>8,90 | 6,16<br>7,91<br>9,51<br>11,3 |

- 1) Effektive Trägheitsmomente für Lastrichtung nach unten (+) bzw. oben (-).
- 2) Mitwirkender Querschnitt für eine konstante Druckspannung  $\sigma = \beta_{S,N}$ .
- Maximale Stützweiten, bis zu denen das Trapezprofil als tragendes Bauteil von Dach- und Deckensystemen verwendet werden darf.
- 4) Bei Schubfeldlängen  $L_S$  < min  $L_S$  müssen die zulässigen Schubflüsse reduziert werden.
- 5) Bei Schubfeldlängen  $L_S > L_G$  ist zul  $T_3$  nicht maßgebend.
- 6) Auflager-Kontaktkräfte  $R_B = K_3 \cdot \gamma \cdot T$ ; (T = vorhandener Schubfluß in [kN/m])
- 7) Einzellast gemäß DIN 18807 Teil 3, Abschnitt 3.6.1.5.
- 8) Als tragendes Bauteil in Dach- und Deckensystemen nicht zugelassen.

PP - Prof 35 - 207

Querschnitts- und Bemessungswerte nach DIN 18807, Teil 1

NEGATIVLAGE Profiltafel in

Anlage 3.4 zum Prüfbescheid Als Typenentwurf in bautechnischer Hinsicht geprüft Prüfbescheid Nr. II B6-543-160 Ministerium für Bauen und Wohnen - PRÜFAMT FÜR BAUSTATIK -Düsseldorf, den 7.10.1994

| Nenn-                        | Feld-                        | Enda                         | werte für nac<br>uflager-<br>räfte | Elas                         | stisch aufne                                                               | ehmbare Sc<br>schenauflag     | hnitt-                                      | R                                              | eststützmom            | ente <sup>o)</sup> |  |
|------------------------------|------------------------------|------------------------------|------------------------------------|------------------------------|----------------------------------------------------------------------------|-------------------------------|---------------------------------------------|------------------------------------------------|------------------------|--------------------|--|
| blech-<br>dicke              | moment                       | Trag-<br>fähigkeit           | Gebrauchs-<br>fähigkeit            |                              | axM <sub>B</sub> ≥ M <sub>B</sub><br>M <sup>0</sup> d - (R <sub>B</sub> /C | ) <sup>E</sup>                | 86 800                                      | M <sub>R</sub> =                               | - min I<br>            | MR                 |  |
|                              |                              |                              |                                    |                              |                                                                            | maximales<br>Stútz-<br>moment | maximale<br>Zwischen-<br>auflager-<br>kraft | M <sub>R</sub> = max M <sub>R</sub> fūri> maxi |                        |                    |  |
| t <sub>N</sub>               | M <sub>dF</sub>              | R <sub>A,T</sub>             | R <sub>A,G</sub>                   | M <sup>0</sup> d             | С                                                                          | max M <sub>B</sub>            | max R <sub>B</sub>                          | min I                                          | max I                  | max M <sub>R</sub> |  |
| [mm]                         | [kNm/m]                      | [kN/m]                       | [kN/m]                             | [kNm/m]                      | [kN1/2/m]                                                                  | [kNm/m]                       | [kN/m]                                      | [m]                                            | [m]                    | [kNm/m]            |  |
|                              |                              | 2)3)bA ≥ 41                  | 0 mm                               | 3) Zwisch                    | enauflager                                                                 | rbreite b <sub>B.&gt;</sub>   | 60 mm, ∈=                                   | 2, [C] =                                       | = kN <sup>1/2</sup> /m |                    |  |
| 0,50<br>0,63<br>0,75<br>0,88 | 0,85<br>1,40<br>1,85<br>2,43 | 4,35<br>6,81<br>9,59<br>13,1 | 4,35<br>6,81<br>9,59<br>13,1       | 0,93<br>1,39<br>1,84<br>2,38 | 11,7<br>15,0<br>18,2<br>21,7                                               | 0,93<br>1,39<br>1,84<br>2,38  | 10,1<br>15,8<br>22,1<br>30,0                |                                                |                        |                    |  |
|                              |                              |                              |                                    |                              |                                                                            |                               |                                             |                                                |                        |                    |  |
|                              |                              | 2)4)b <sub>A</sub> ≥ 4       | 0 mm                               | 4) Zwisch                    | enauflager                                                                 | rbreite b <sub>B.</sub> >     | 160 mm, ∈                                   | = 2, [C]                                       | $= kN^{1/2}/m$         |                    |  |
| 0,50<br>0,63<br>0,75<br>0,88 | 0,85<br>1,40<br>1,85<br>2,43 | 4,35<br>6,81<br>9,59<br>13,1 | 4,35<br>6,81<br>9,59<br>13,1       | 0,93<br>1,39<br>1,84<br>2,38 | 17,4<br>22,0<br>26,6<br>31,4                                               | 0,93<br>1,39<br>1,84<br>2,38  | 15,0<br>23,2<br>32,2<br>43,4                |                                                |                        |                    |  |

Aufnehmbare Trägfähigkeitswerte für nach oben gerichtete und abhebende Flächen-Belastung 1) 6)

| Nenn-                        | Feld-                        | Befes                        | tigung in je                 | dem anl                      | iegenden G                   | aurt                          | Befestig                     | gung in jede                 | em 2. an                     | liegenden                     | Gurt                         |
|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|-------------------------------|------------------------------|------------------------------|------------------------------|-------------------------------|------------------------------|
| blech-<br>dicke              | moment                       | Endauf-<br>lager             | _                            |                              | flager <sup>5)</sup> , ∈     |                               | Endauf-<br>lager             | Zwis                         | chenau                       | flager <sup>5)</sup> , ∈ :    | = 1                          |
| t <sub>N</sub>               | M <sub>dF</sub>              | R <sub>A</sub> [kN/m]        | M <sup>0</sup> d<br>[kNm/m]  | C<br>[1/m]                   | max M <sub>B</sub> [kNm/m]   | max R <sub>B</sub> [kN/m]     | R <sub>A</sub><br>[kN/m]     | M <sup>0</sup> d<br>[kNm/m]  | C<br>[1/m]                   | max M <sub>B</sub><br>[kNm/m] | max R <sub>B</sub><br>[kN/m] |
| 0,50<br>0,63<br>0,75<br>0,88 | 0,93<br>1,39<br>1,84<br>2,38 | 19,4<br>31,8<br>46,1<br>60,9 | 1,11<br>1,82<br>2,41<br>3,16 | 45,5<br>45,5<br>49,8<br>50,1 | 0,85<br>1,40<br>1,85<br>2,43 | 38,7<br>63,7<br>92,2<br>121,8 | 9,68<br>15,9<br>23,1<br>30,5 | 0,55<br>0,91<br>1,20<br>1,58 | 45,5<br>45,5<br>49,8<br>50,1 | 0,43<br>0,70<br>0,93<br>1,21  | 19,4<br>31,8<br>46,1<br>60,9 |

1) An den Stellen von Linienlasten quer zur Spannrichtung und von Einzellasten ist der Nachweis nicht mit dem Feldmoment M<sub>dF</sub>, sondern mit dem Stützmoment M<sub>B</sub> für die entgegengesetzte Lastrichtung zu führen.

b<sub>A</sub> = Endauflagerbreite.Bei einem Profiltafelüberstand ü≥50 mm dürfen die R<sub>A</sub>-Werte um 20% erhöht werden.

3) Für kleinere Auflagerbreiten muß zwischen den angegebenen aufnehmbaren Tragfähigkeitswerten und denen bei 10 mm Auflagerbreite linear interpoliert werden. Für Auflagerbreiten kleiner als 10 mm, z.B. bei Rohren, darf maximal 10 mm eingesetzt werden.

4) Bei Auflagerbreiten, die zwischen den aufgeführten Werten liegen, dürfen die aufnehmbaren Tragfähig-Nordehein-Westfale

keitswerte jeweils linear interpoliert werden.

5) Interaktionsbeziehung für  $M_B$  und  $R_B$ :  $M_B = M_d^0 - (R_B/C)^{\epsilon}$ . Sind keine Werte für  $M_d^0$  und C angegeben, ist M<sub>B</sub> = maxM<sub>B</sub> zu setzen.

6) Sind keine Werte für die Reststützmomente angegeben, ist beim Tragsicherheitsnachweis Mp = 0 setzen, oder ein Nachweis mit γ = 1,7 nach der Elastizitätstheorie zu führen. (I = kleinere der benachbarten Stützweiten).