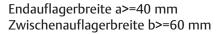

Positivlage

Belastungstabellen nach DIN 18 807

belastungst	abelien nach DIN	10 00	7.													
EINFEL	.DTRÄGER						-q 									
Blech- dicke t [mm]	Eigen- gewicht a [kN/m²]		Zulässig 1,00	e Belastu 1.20	ngg[kN/n 1.40	n²]einsch l 1.60	I. Blecheid	gengewic 2,00	htbeiein 2.20	erStützwo	eite L[m] 2.60	2.80	3.00	3.20	3.40	3,60
0,70	0,024	1 2 3 4	3,84 3,84 3,84 3,80	2,96 2,96 2,96 2,96 2,20	2,18 2,18 2,08 1,39	1,67 1,67 1,39 0,93	1,32 1,30 0,98 0,65	1,07 0,95 0,71 0,48	0,88 0,71 0,54 0,36	0,74 0,55 0,41 0,28	0,63 0,43 0,32 0,22	0,54 0,35 0,26 0,17	0,47 0,28 0,21 0,14	0,42 0,23 0,17 0,12	0,37 0,19 0,15 0,10	0,33 0,16 0,12 0,08
0,90	0,030	1 2 3 4	6,62 6,62 6,62 5,26	4,90 4,90 4,57 3,05	3,60 3,60 2,88 1,92	2,76 2,57 1,93 1,29	2,18 1,81 1,35 0,90	1,76 1,32 0,99 0,66	1,46 0,99 0,74 0,49	1,23 0,76 0,57 0,38	1,04 0,60 0,45 0,30	0,90 0,48 0,36 0,24	0,78 0,39 0,29 0,19	0,69 0,32 0,24 0,16	0,61 0,27 0,20 0,13	0,54 0,23 0,17 0,11


ZWEIF	ELDTRÄGI	ER			a		q —	<u></u>		<u></u>						
Blech- dicke t [mm]	Eigen- gewicht a [kN/m²]		Zulässig 1.00	e Belastu	ngg[kN/r	n²]einsch	I. Blechei	gengewic 2.00	htbeiein 2.20	erStützwo	eite L[m] 2.60	2,80	3.00	2 20	3.40	3,60
1111111	T G T KIN/III-I	1	2.45	1.89	1.50	1,00	1.01	0.85	0,72	0.62	0.54	0.48	0.42	0,37	0,33	0,30
		2	2,45	1,89	1,50	1,22	1,01	0,85	0,72	0,62	0,54	0,47	0,42	0,37	0,33	0,30
0,70	0,024	3	2,45	1,89	1,50	1,22	1,01	0,85	0,72	0,62	0,54	0,47	0,42	0,37	0,33	0,29
		4	2,45	1,89	1,50	1,22	1,01	0,85	0,72	0,62	0,52	0,42	0,34	0,28	0,23	0,20
		2	4,16 4,16	3,19 3,19	2,53	2,05 2,05	1,69 1,69	1,42 1,42	1,21	1,04 1,04	0,90 0,90	0,79	0,70 0,70	0,62 0,62	0,56 0,56	0,50 0,50
0,90	0,030	3 4	4,16 4,16	3,19 3,19	2,53 2,53	2,05 2,05	1,69 1,69	1,42 1,42	1,21 1,19	1,04 0,92	0,90 0,72	0,79 0,58	0,70 0,47	0,58 0,39	0,48 0,32	0,41 0,27

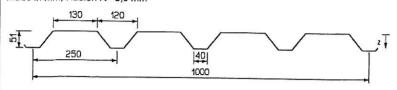
DREIF	ELDTRÄGE	R			a			b—								
Blech- dicke t [mm]	Eigen- gewicht a [kN/m²]		Zulässig 1.00	e Belastu 1.20	ngg[kN/r 1.40	n²]einsch l 1.60	II. Blecheid	gengewic 2,00	htbeiein 2.20	erStützwe	eite L[m]	1 2.80	3.00	3,20	3.40	3,60
0,70	0,024	1 2 3 4	2,89 2,89 2,89 2,89 2,89	2,24 2,24 2,24 2,24 2,24	1,79 1,79 1,79 1,79	1,46 1,46 1,46 1,46	1,21 1,21 1,21 1,21 1,21	1,02 1,02 1,02 1,02 0,90	0,87 0,87 0,87 0,87 0,67	0,76 0,76 0,76 0,76 0,52	0,66 0,66 0,61 0,41	0,58 0,58 0,49 0,33	0,51 0,51 0,40 0,27	0,46 0,44 0,33 0,22	0,41 0,37 0,27 0,18	0,37 0,31 0,23 0,15
0,90	0,030	1 2 3 4	4,91 4,91 4,91 4,91	3,79 3,79 3,79 3,79	3,02 3,02 3,02 3,02	2,46 2,46 2,46 2,43	2,04 2,04 2,04 1,70	1,72 1,72 1,72 1,24	1,47 1,47 1,40 0,93	1,27 1,27 1,08 0,72	1,10 1,10 0,85 0,57	0,97 0,91 0,68 0,45	0,86 0,74 0,55 0,37	0,76 0,61 0,45 0,30	0,68 0,51 0,38 0,25	0,62 0,43 0,32 0,21

Zeile 1 = Ohne Beschränkung der Durchbiegung

Zeile 2 = Zulässige Belastung bei einer Durchbiegung von f<= L/150 Zeile 3 = Zulässige Belastung bei einer Durchbiegung von f<= L/200

Zeile 4 = Zulässige Belastung bei einer Durchbiegung von f<= L/300

PP - TRP 50-250


Anlage 5.1

Querschnitts- und Schubfeldwerte nach DIN 18807 Teil 6

zum Prüfbericht Nr. TP-10/008 vom 19. November 2010

Profiltafel in Positivlage

Maße in mm, Radien R= 5,0 mm

Nennwert der Spannung an der 0,2%- Dehngrenze: $R_{p0,2}$ = 180 N/mm²; Zugfestigkeit R_m = 210 N/mm²

Blech-	Eigen-	Bieg	ung 1)		Norr	nalkraftbea	anspruch	ung		Grenzstüt	zweite "
dicke	last		Y	nicht redu	ızierter Q	uerschnitt	wirksam	ner Quers	schnitt ²⁾	Einfeld- I träger	Mehrfeld- träger
t	g	l _{ef}	l _{ef}	A _g	ig	Z _g	A _{ef}	i _{ef}	Z _{ef}	l _{gr}	l _{gr}
mm	kN/m²	cm⁴/m	cm⁴/m	cm²/m	cm	cm	cm²/m	cm	cm	m	m
0,70	0,024	21,22	27,86	8,39	2,01	1,78	2,06	2,38	2,55	1	
0,90	0,030	29,38	41,26	10,79	2,01	1,78	3,40	2,34	2,55	/	/
							DATA PARTIES AND ADDRESS OF THE PARTIES AND ADDR				

Schubfeldwerte

			$T_{3,k} = G_s / T_{3,k}$ $G_s = 10$	750 in kN/m) ⁴ /(k′ ₁ +k′ ₂ /L _s)			3
t mm	L _R ⁴⁾	T _{1,k} ⁴⁾ kN/m	k′ ₁ m/kN	k′ ₂ m²/kN	k, kN-1	k [*] ₂ ⁵⁾ m²/kN	k ₃ ⁶⁾
							in the contract of the contrac

- 1) Wirksame Trägheitsmomente für Lastrichtung nach unten (+) bzw. oben (-).
- ²⁾ Wirksamer Querschnitt für eine konstante Druckspannung σ = $R_{p0,2}$
- 3) Maximale Stützweiten, bis zu denen das Trapezprofil ohne lastverteilende Maßnahmen begangen werden darf.
- ⁴⁾ Für Einzelstützweiten $L_{s_i} \le L_R$ darf $T_{1,k}$ aus der Tabelle entnommen oder mit $(L_R/L_{s_i})^2$ erhöht werden; für $L_{s_i} > L_R$ muß $T_{1,k}$ mit $(L_R/L_{s_i})^2$ abgemindert werden. Für Einfeldträger ist $T_{1,k} = 2 \times T$ abellenwert.
- 5) Falls erforderlich, darf die Gesamtverformung eines Schubfeldes wie folgt ermittelt werden:

$$f = [(k_1' + k_1' \cdot e_L) + (k_2' + k_2')/L_s] \cdot 10^{-1} \cdot a \cdot \text{vorh T}$$

in mm

 $\operatorname{mit} \quad \operatorname{e_L} \quad = \operatorname{Abstand} \operatorname{der} \operatorname{Verbindungen} \operatorname{im} \operatorname{Längsstoß} \operatorname{in} \operatorname{m}$

a = Schubfeldbreite in m, senkrecht zur Profilierrichtung

T = vorhandener Schubfluss in kN/m

⁶⁾ $T \times k_3 + A \le R_{A,k} / \gamma_{M'}$ mit $T = \gamma_F$ -facher vorhandener Schubfluss

PP - TRP 50-250

Anlage 5.2

Charakteristische Tragfähigkeitswerte nach DIN 18807 Teil 6

zum Prüfbericht Nr. TP-10/008 vom 19. November 2010

Profiltafel in

Positivlage

Tragfähigkeitswerte für nach unten gerichtete und andrückende Flächenbelastung ¹⁾ Nennwert der Spannung an der 0,2%- Dehngrenze: $R_{p0,2}$ = 180 N/mm². Als Teilsicherheitsbeiwert ist $\gamma_{\rm M}$ = 1,1 zu verwenden.

Blech- dicke	Feld- moment	Endaufla- gerkraft		Elastis	ch aufnehm	bare Schni	tgrößen a	n Zwisch	enstützen ⁵⁾	
aroko	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				max, Stütz- moment	max. Auflager- kraft			max. Stütz- moment	max. Auflager- kraft
t	M _{F.k}	R _{A,k}	M _{B,k}	$R_{B,k}^0$	max M _{B,k}	max R _{B,k}	M _{B,k}	$R_{B,k}^0$	max M _{B,k}	max R _{B,k}
mm	kNm/m	kN/m	kNm/m	kN/m	kNm/m	kN/m	kNm/m	kN/m	kNm/m	kN/m
		b _A = 40 mm ²⁾³⁾			uflagerbreit mm: ε=	e ³⁾ = 2			uflagerbreit mm; ε=	re ⁴⁾
0,70	0,879	3,17	0,873	7,79	0,873	6,97	0,873	9,91	0,873	8,86
0,90	1,456	5,46	1,450	13,43	1,450	12,01	1,450	17,08	1,450	15,28

Charakteristische Tragfähigkeitswerte für nach oben gerichtete und abhebende Flächenbelastung ¹⁾ Als Teilsicherheitsbeiwert ist $\gamma_{\rm M}$ = 1,1 zu verwenden.

Blech- dicke	Feld- moment	Verbi	ndung in je	edem anli	egenden (Gurt	Verbir	ndung in je	edem 2. a	ınliegende	n Gurt
UICKE	moment	Endauf- lager		Zwischen	auflager 6)		Endauf- lager			auflager ⁶	
t	M _{F,k}	$R_{A,k}$	M _{B,k}	V_k^0	max M _{B,k}	max V _k		M _{B,k}	V _k ⁰	max M _{B,k}	max V _k
mm	kNm/m ,	kN/m	kNm/m	kN/m	kNm/m	kN/m	kN/m	kNm/m	kN/m	kNm/m	kN/m
0,70	0,873	13,06			0,879	13,06	6,53	/	/	0,440	6,53
0,90	1,450	25,34			1,456	25,34	12,67			0,728	12,67
				/							

- An den Stellen von Linienlasten quer zur Spannrichtung und von Einzellasten ist der Nachweis nicht mit dem Feldmoment M_{F,k}, sondern mit dem Stützmoment max M_{B,k} für die entgegengesetzte Lastrichtung zu führen.
- 2) $b_A = \text{Endauflagerbreite}$. Bei einem Profiltafelüberstand ü [mm] $\geq s_w/t$ dürfen die $R_{A,k}$ Werte um 20% erhöht werden.
- 3) Für kleinere Auflagerbreiten muss zwischen den angegebenen aufnehmbaren Tragfähigkeitswerten und denen bei 10 mm Auflagerbreite linear interpoliert werden. Für Auflagerbreiten kleiner als 10 mm, z.B. bei Rohren, darf maximal 10 mm eingesetzt werden.
- 4) Bei Auflagerbreiten, die zwischen den aufgeführten Werten liegen, dürfen die aufnehmbaren Tragfähigkeitswerte jeweils linear interpoliert werden.
- 5) Interaktionsbeziehung für $M_{\rm B}$ und $R_{\rm B}$:

$$\frac{M_B}{M_{B,k}^0/\gamma_M} + \left(\frac{R_B}{R_{B,k}^0/\gamma_M}\right)^{\epsilon} \le 1$$

6) Interaktionsbeziehung für M_B und V:

$$\frac{M_{B}}{\max M_{B,k}/\gamma_{M}} + \frac{V}{\max V_{k}/\gamma_{M}} \le 1,3$$

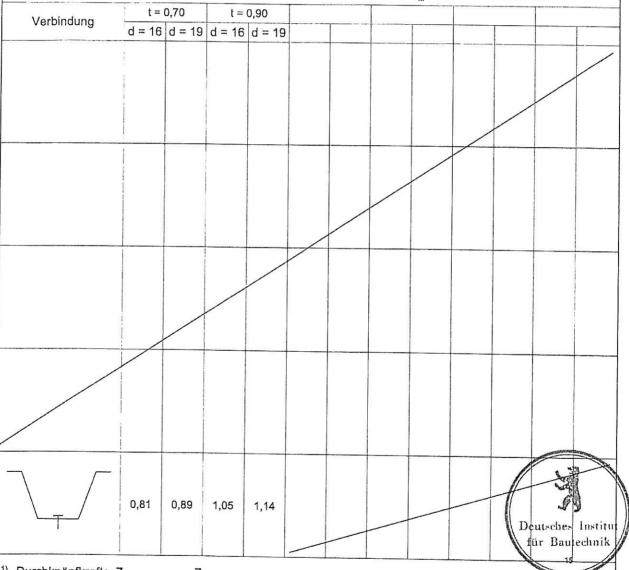
Sind keine Werte für $M_{B,k}^{\circ}$ und $R_{B,k}^{\circ}$ angegeben ist kein M_g/R_g - Interaktionsnachweis zu führen.

PP - TRP 50-250

zum Prüfbericht Nr. TP-10/008 vom 19. November 2010

5.3

Anlage


Charakteristische Durchknöpftragfähigkeitswerte für Verbindungen nach DIN 18807 Teil 6

Profiltafel in

Positivlage

Basiswert der Durchknöpfkraft $Z_{0,k}$ in kN pro Verbindungselement in Abhängigkeit von der Blechdicke t in mm und dem Scheibendurchmesser d in mm. ¹⁾²⁾

Nennwert der Zugfestigkeit: $R_{\rm m}$ = 210 N/mm². Als Teilsicherheitsbeiwert ist $\gamma_{\rm M}$ = 1,33 zu verwenden.


1) Durchknöpfkraft: $Z_{I,k} = \alpha_L \cdot \alpha_M \cdot \alpha_E \cdot Z_{0,k}$

mit α_L = Beiwert zur Berücksichtigung der Biegezugspannung im angeschlossenen Gurt nach DIN 18807, Teil 6, Tabelle 2 (α_L = 1,0 bei Befestigung am Endauflager)

 $\alpha_{_{
m M}}^{}$ = Beiwert zur Berücksichtigung der Werkstoffes der Dichtscheibe nach DIN 18807, Teil 6, Tabelle 3

 $\alpha_{\rm E}~$ = Beiwert zur Berücksichtigung der Anordnung der Verbindung nach DIN 18807, Teil 6, Tabelle 4

²⁾ Es ist außerdem die aufnehmbare Zugkraft für die Verbindung mit der jeweiligen Unterkonstruktion und für das Verbindungselement selbst zu berücksichtigen.

Trapezprofil P 50-250Aluminum

Negativlage

Belastungstabellen nach DIN 18 807.

EINFEL	.DTRÄGER				а∏			4								
Blech- dicke t	Eigen- gewicht		Zulässig	e Belastur	ngg[kN/r	n²]einsch	l.Blecheid	gengewic	htbeiein	erStützw	eiteL[m]					
[mm]	a [kN/m²]		1,00	1,20	1,40	1,60	1,80	2,00	2,20	2,40	2,60	2,80	3,00	3,20	3,40	3,60
		1	3,84	2,94	2,16	1,65	1,31	1,06	0,87	0,74	0,63	0,54	0,47	0,41	0,37	0,33
		2	3,84	2,94	2,16	1,65	1,31	1,06	0,87	0,72	0,57	0,45	0,37	0,30	0,25	0,21
0,70	0,024	3	3,84	2,94	2,16	1,65	1,28	0,94	0,70	0,54	0,43	0,34	0,28	0,23	0,19	0,16
		4	3,84	2,89	1,82	1,22	0,86	0,62	0,47	0,36	0,28	0,23	0,18	0,15	0,13	0,11
		1	6,62	4,88	3,59	2,75	2,17	1,76	1,45	1,22	1,04	0,90	0,78	0,69	0,61	0,54
		2	6,62	4,88	3,59	2,75	2,17	1,76	1,39	1,07	0,84	0,67	0,55	0,45	0,38	0,32
0,90	0,030	3	6,62	4,88	3,59	2,71	1,90	1,39	1,04	0,80	0,63	0,51	0,41	0,34	0,28	0,24
		4	6,62	4,28	2,69	1,81	1,27	0,92	0,69	0,53	0,42	0,34	0,27	0,23	0,19	0,16

ZWEIF	ELDTRÄG	ER			a II		<u></u>	• <u> </u>	L	<u> </u>						
Blech- dicke t	Eigen- gewicht			e Belastu						erStützw		3.00	3.00	3.30		3.60
[mm]	a [kN/m²]		1,00	1,20	1,40	1,60	1,80	2,00	2,20	2,40	2,60	2,80	3,00	3,20	3,40	3,60
		1	2,46	1,89	1,50	1,22	1,01	0,85	0,72	0,62	0,54	0,48	0,42	0,37	0,34	0,30
		2	2,46	1,89	1,50	1,22	1,01	0,85	0,72	0,62	0,54	0,48	0,42	0,37	0,34	0,30
0,70	0,024	3	2,46	1,89	1,50	1,22	1,01	0,85	0,72	0,62	0,54	0,48	0,42	0,37	0,34	0,30
		4	2,46	1,89	1,50	1,22	1,01	0,85	0,72	0,62	0,54	0,48	0,42	0,37	0,31	0,26
		1	4,17	3,20	2,53	2,05	1,70	1,43	1,21	1,04	0,91	0,80	0,70	0,62	0,56	0,50
		2	4,17	3,20	2,53	2,05	1,70	1,43	1,21	1,04	0,91	0,80	0,70	0,62	0,56	0,50
0,90	0,030	3	4,17	3,20	2,53	2,05	1,70	1,43	1,21	1,04	0,91	0,80	0,70	0,62	0,56	0,50
		4	4,17	3,20	2,53	2,05	1,70	1,43	1,21	1,04	0,91	0,80	0,66	0,54	0,45	0,38

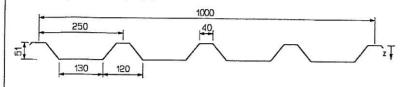
DREIF	ELDTRÄGE	R			a∭											
Blech- dicke t [mm]	Eigen- gewicht a [kN/m²]		Zulässig	e Belastur 1.20	ngg[kN/r 1.40	n²]einsch	I. Blechei	gengewic 2.00	htbeiein 2.20	erStützwe 2.40	eite L[m] 2.60	2.80	3.00	3.20	3.40	3.60
1	G I KIV/III I	1	2.90	2.24	1,79	1,46	1.22	1.03	0.88	0.76	0.66	0.58	0,52	0.46	0.41	0,37
		2	2,90	2,24	1,36	1,46	1,22	1,03	0,88	0,76	0,66	0,58	0,52	0,46	0,41	0,37
0,70	0,024	3	2,90	2,24	1,36	1,46	1,22	1,03	0,88	0,76	0,66	0,58	0,52	0,43	0,36	0,30
		4	2,90	2,24	1,36	1,46	1,22	1,03	0,88	0,68	0,54	0,43	0,35	0,29	0,24	0,20
		1	4,92	3,80	3,03	2,47	2,05	1,73	1,47	1,27	1,11	0,97	0,86	0,77	0,69	0,62
		2	4,92	3,80	3,03	2,47	2,05	1,73	1,47	1,27	1,11	0,97	0,86	0,77	0,69	0,60
0,90	0,030	3	4,92	3,80	3,03	2,47	2,05	1,73	1,47	1,27	1,11	0,95	0,78	0,64	0,53	0,45
	, i	4	4,92	3,80	3,03	2,47	2,05	1,73	1,31	1,01	0,79	0,64	0,52	0,43	0,36	0,30

Zeile 2 = Zulässige Belastung bei einer Durchbiegung von f<= L/150

Zeile 3 = Zulässige Belastung bei einer Durchbiegung von f<= L/200

Zeile 4 = Zulässige Belastung bei einer Durchbiegung von f<= L/300

PP - TRP 50-250

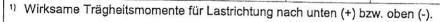

Querschnitts- und Schubfeldwerte nach DIN 18807 Teil 6

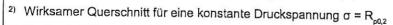
Anlage 5.4

zum Prüfbericht Nr. TP-10/008 vom 19. November 2010

Profiltafel in Negativlage

Maße in mm, Radien R= 5,0 mm




Nennwert der Spannung an der 0,2%- Dehngrenze: $R_{p0,2}$ = 180 N/mm²; Zugfestigkeit R_m = 210 N/mm²

Blech-	Eigen-	Biegi	ung 1)		Norr	nalkraftbea	anspruch	ung		Grenzsti	ützweite ³⁾
dicke	last		1	nicht redu	ızierter Q	uerschnitt	wirksam	ner Quers	schnitt 2)	Einfeld- träger	Mehrfeld- träger
t	g	l_{ef}^{+}	l _{ef}	A _g	i _g	Z _g	A _{ef}	j _{el}	Z _{ef}	l _{gr}	l _{gr}
mm	kN/m²	cm⁴/m	cm⁴/m	cm²/m	cm	cm	cm²/m	cm	cm	m	m
0,70	0,024	27,86	21,22	8,39	2,01	3,32	2,06	2,38	2,55	/	,
0,90	0,030	41,26	29,38	10,79	2,01	3,32	3,40	2,34	2,55		
				The control of the co							

Schubfeldwerte

			$T_{3,k} = G_s/2$	750 in kN/m			
		San	G _s = 10	4/(k' ₁ +k' ₂ /L _s)		1100	
t	L _R 4)	T _{1,k} 4)	k',	k′ ₂	k,	k 2 5)	k ₃ ⁶⁾
mm	m	kN/m	m/kN	m²/kN	kN-1	m²/kN	_
							50

³⁾ Maximale Stützweiten, bis zu denen das Trapezprofil ohne lastverteilende Maßnahmen begangen werden darf.

5) Falls erforderlich, darf die Gesamtverformung eines Schubfeldes wie folgt ermittelt werden:

$$f = [(k_1' + k_1^* \cdot e_L) + (k_2' + k_2^*)/L_s] \cdot 10^{-1} \cdot a \cdot \text{vorh T}$$
 in mm

 $\operatorname{mit} \quad \operatorname{e_L} = \operatorname{Abstand} \operatorname{der} \operatorname{Verbindungen} \operatorname{im} \operatorname{Längsstoß} \operatorname{in} \operatorname{m}$

a = Schubfeldbreite in m, senkrecht zur Profilierrichtung

T = vorhandener Schubfluss in kN/m

6) T × k₃ + A ≤ R_{A,k} / γ_M, mit T= γ_F- facher vorhandener Schubfluss

Für Einzelstützweiten $L_{s_i} \le L_R$ darf $T_{1,k}$ aus der Tabelle entnommen oder mit $(L_R/L_{s_i})^2$ erhöht werden; für $L_{s_i} > L_R$ muß $T_{1,k}$ mit $(L_R/L_{s_i})^2$ abgemindert werden. Für Einfeldträger ist $T_{1,k} = 2 \times T$ abellenwert.

PP - TRP 50-250

Anlage 5.5

Charakteristische Tragfähigkeitswerte nach DIN 18807 Teil 6

zum Prüfbericht Nr. TP-10/008 vom 19. November 2010

Profiltafel in

Negativlage

Tragfähigkeitswerte für nach unten gerichtete und andrückende Flächenbelastung ¹⁾ Nennwert der Spannung an der 0,2%- Dehngrenze: $R_{p0,2}$ = 180 N/mm². Als Teilsicherheitsbeiwert ist $\gamma_{\rm M}$ = 1,1 zu verwenden.

		Pole	,				. 1W					
Blech- dicke	Feld- moment	Endaufla- gerkraft		Elastis	ch aufnehm	bare Schni	ttgrößen a	ın Zwisch	enstützen ⁵⁾			
			_		max. Stütz- moment	max. Auflager- kraft			max. Stütz- moment	max. Auflager kraft		
t	M _{F,k}	$R_{A,k}$	$M_{B,k}^0$	R _{B,k}	max M _{B,k}	max R _{B,k}	M _{B,k}	$R_{B,k}^0$	max M _{B,k}	max R _{B,k}		
mm	kNm/m	kN/m	kNm/m	kN/m	kNm/m	kN/m	kNm/m	kN/m	kNm/m	kN/m		
		b _A =40 mm ²⁾³⁾	100	/wischena = 60	uflagerbreit mm; ε=	e ³⁾ = 2	Zwischenauflagerbreite 4) $b_B \ge 120 \text{ mm}; \epsilon = 2$					
0,70	0,873	3,17	0,879	7,79	0,879	6,97	0,879	9,91	0,879			
0,90	1,450	5,46	1,456	13,43	1,456	12,01	1,456	17,08	1,456	8,86 15,28		
	1011 - 11	97.70										

Charakteristische Tragfähigkeitswerte für nach oben gerichtete und abhebende Flächenbelastung ¹⁾ Als Teilsicherheitsbeiwert ist $\gamma_{\rm M}$ = 1,1 zu verwenden.

Blech- dicke	Feld-	Verbi	ndung in je	edem anl	iegenden (Gurt	Verbindung in jedem 2. anliegenden Gurt						
dicke	moment	Endauf- lager		Zwischer	auflager ⁶⁾		Endauf- lager			nauflager ⁶			
t	$M_{F,k}$	$R_{A,k}$	M _{B,k}	V_k^0	max M _{a,k}	max V _k		M _{B,k}	V_k^0	max M _{B.k}	max V _k		
mm	kNm/m	kN/m	kNm/m	kN/m	kNm/m	kN/m	kN/m	kNm/m	kN/m	kNm/m	kN/m		
0,70	0,879	13,06	1	/	0,873	13,06	6,53	7	/	0,437	6,53		
0,90	1,456	25,34			1,450	25,34	12,67		/	0,725	12,67		
								/ /			•		
			/	/									
								/					
				/				/					

- 1) An den Stellen von Linienlasten quer zur Spannrichtung und von Einzellasten ist der Nachweis nicht mit dem Feldmoment M_{F,x}, sondern mit dem Stützmoment max M_{B,k} für die entgegengesetzte Lastrichtung zu führen.
- 2) $b_A = \text{Endauflagerbreite}$. Bei einem Profiltafelüberstand ü [mm] $\geq s_w/t$ dürfen die $R_{A,k}$ Werte um 20% erhöht werden.
- 3) Für kleinere Auflagerbreiten muss zwischen den angegebenen aufnehmbaren Tragfähigkeitswerten und denen bei 10 mm Auflagerbreite linear interpoliert werden. Für Auflagerbreiten kleiner als 10 mm, z.B. bei Rohren, darf maximal 10 mm eingesetzt werden.
- 4) Bei Auflagerbreiten, die zwischen den aufgeführten Werten liegen, dürfen die aufnehmbaren Tragfähigkeitswerte jeweils linear interpoliert werden.
- 5) Interaktionsbeziehung für $M_{\rm B}$ und $R_{\rm g}$:

$$\frac{M_B}{M_B^0 L/\gamma_H} + \left(\frac{R_B}{R_B^0 L/\gamma_H}\right)^{\epsilon} \le 1$$

6) Interaktionsbeziehung für M_B und V:

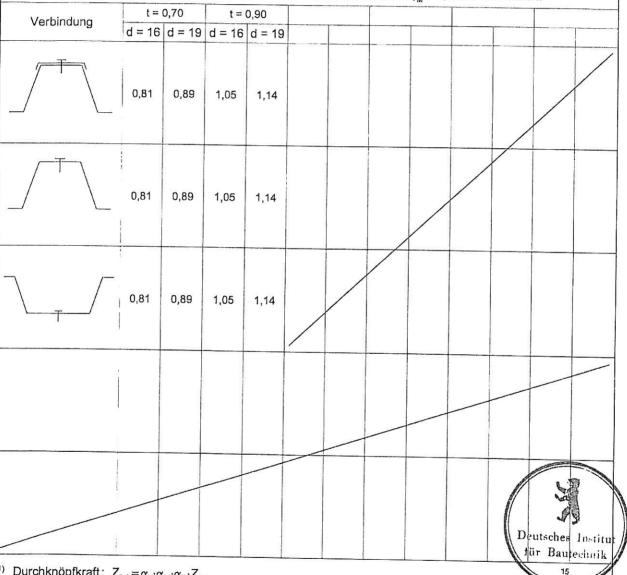
$$\frac{M_B}{\max M_{B.k}/\gamma_M} + \frac{V}{\max V_k/\gamma_M} \le 1.3$$

Sind keine Werte für $M^{\circ}_{_{B,k}}$ und $R^{\circ}_{_{B,k}}$ angegeben ist kein $M_{_B}/R_{_B}$ - Interaktionsnachweis zu führen.

PP - TRP 50-250

Anlage 5.6

Charakteristische Durchknöpftragfähigkeitswerte für Verbindungen nach DIN 18807 Teil 6


zum Prüfbericht Nr. TP-10/008 19. November 2010

Profiltafel in

Negativlage

Basiswert der Durchknöpfkraft $Z_{0,k}$ in kN pro Verbindungselement in Abhängigkeit von der Blechdicke t in mund dem Scheibendurchmesser d in mm. 1)2)

Nennwert der Zugfestigkeit: R_m = 210 N/mm². Als Teilsicherheitsbeiwert ist γ_M = 1,33 zu verwenden.

1) Durchknöpfkraft: $Z_{I,k} = \alpha_L \cdot \alpha_M \cdot \alpha_E \cdot Z_{0,k}$

mit α_L = Beiwert zur Berücksichtigung der Biegezugspannung im angeschlossenen Gurt nach DIN 18807, Teil 6, Tabelle 2 (α_L = 1,0 bei Befestigung am Endauflager)

 $\alpha_{_{\!M}}^{}$ = Beiwert zur Berücksichtigung der Werkstoffes der Dichtscheibe nach DIN 18807, Teil 6, Tabelle 3

 $\alpha_{_{\rm E}}~$ = Beiwert zur Berücksichtigung der Anordnung der Verbindung nach DIN 18807, Teil 6, Tabelle 4

2) Es ist außerdem die aufnehmbare Zugkraft für die Verbindung mit der jeweiligen Unterkonstruktion und für das Verbindungselement selbst zu berücksichtigen.

Belastungstabellen nach DIN 18 807. Die Werte im Rasterfeld gelten für tragende Dachsysteme.

EINFEL	DTRÄGER				a IIIII	пЦППП											
Blech- dicke t	Eigen- gewicht	Grenz- stützweite			e Belastu									2.40	3.60	2.00	1 4 00
[mm]	g [kN/m_]	I[m]		1,50	1,60	1,80	2,00	2,20	2,40	2,60	2,80	3,00	3,20	3,40	3,60	3,80	4,00
			7	3,77 3,77	3,31 3,31	2,61 2,61	2,12 2.12	1,75 1.75	1,47 1,47	1,25 1,16	1,08 0,93	0,94 0,76	0,83 0,62	0,73 0,52	0,65 0,44	0,59 0,37	0,53 0,32
0,63	0,063	1,24	3	3,77	3,31	2,61	1,91	1,44	1,11	0,87	0,70	0,57	0,47	0,39	0,33	0,28	0,24
			4	3,03	2,49	1,75	1,28	0,96	0,74	0,58	0,47	0,38	0,31	0,26	0,22	0,19	0,16
			1	5,40	4,74	3,75	3,04	2,51	2,11	1,80	1,55	1,35	1,19	1,05	0,94	0,84	0,76
			2	5,40	4,74	3,75	3,04	1,65	1,86	1,47	1,17	0,95	0,79	0,66	0,55	0,47	0,40
0,75	0,075	1,45	3	5,40	4,72	3,31	2,42	1,24	1,40	1,10	0,88	0,72	0,59	0,49	0,41	0,35	0,30
			4	3,82	3,15	2,21	1,61	0,82	0,93	0,73	0,59	0,48	0,39	0,33	0,28	0,23	0,20
			1	6,89	6,05	4,78	3,87	3,20	2,69	2,29	1,98	1,72	1,51	1,34	1,20	1,07	0,97
			2	6,89	6,05	4,78	3,87	2,99	2,30	1,81	1,45	1,18	0,97	0,81	0,68	0,58	0,50
0,88	0,088	2,15	3	6,89	5,83	4,10	2,99	2,24	1,73	1,36	1,09	0,88	0,73	0,61	0,51	0,44	0,37
			4	4,72	3,89	2,73	1,99	1,50	1,15	0,91	0,73	0,59	0,49	0,41	0,34	0,29	0,25

ZWEIF	ELDTRÄGE	R			а	-q											
Blech- dicke t [mm]	Eigen- gewicht a [kN/m]	Grenz- stützweite [m]		Zulässig 1.50	e Belastu	n g q [kN/r 1.80	n_]einsch	nl. Bleche	igengewi	cht bei ein	er Stützw	reite L[m]	3.20	3.40	3.60	3.80	4,00
0,63	0,063	1,55	1 2 3 4	3,26 3,26 3,26 3,26 3,26	2,95 2,95 2,95 2,95 2,95	2,45 2,45 2,45 2,45 2,45	2,07 2,07 2,07 2,07 2,07	1,75 1,75 1,75 1,75	1,47 1,47 1,47 1,47	1,25 1,25 1,25 1,25	1,08 1,08 1,08 1,08	0,94 0,94 0,94 0,91	1,15 1,15 1,15 1,15	0,73 0,73 0,73 0,73 0.63	0,65 0,65 0,65 0,65	0,59 0,59 0,59 0,59 0,45	0,53 0,53 0,53 0,53 0,38
0,75	0,075	1,81	1 2 3 4	4,61 4,61 4,61 4,61	4,18 4,18 4,18 4,18 4,18	3,47 3,47 3,47 3,47	2,93 2,93 2,93 2,93	2,50 2,50 2,50 2,50 2,50	2,11 2,11 2,11 2,11 2,11	1,80 1,80 1,80 1,80	1,55 1,55 1,55 1,55 1,41	1,35 1,35 1,35 1,35 1,15	1,19 1,19 1,19 1,19 0,95	1,05 1,05 1,05 1,05 0,79	0,94 0,94 0,94 0,67	0,84 0,84 0,84 0,57	0,76 0,76 0,73 0,48
0,88	0,088	2,69	1 2 3 4	6,31 6,31 6,31 6,31	5,72 5,72 5,72 5,72	5,21 5,21 5,21 5,21	3,87 3,87 3,87 3,87	3,20 3,20 3,20 3,20	2,69 2,69 2,69 2,69	2,29 2,29 2,29 2,18	1,98 1,98 1,98 1,75	1,72 1,72 1,72 1,42	1,51 1,51 1,51 1,17	1,34 1,34 1,34 0,98	1,20 1,20 1,20 0,82	1,07 1,07 1,05 0,70	0,97 0,97 0,90 0,60

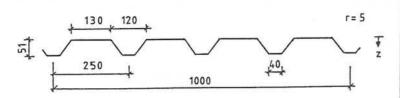
DREIF	ELDTRÄGE	R			a	Figure 1					<u> </u>						
Blech- dicke t [mm]	Eigen- gewicht a [kN/m]	Grenz- stützweite		Zulässig	e Belastu	ngq[kN/r l 1.80	n_]einscl	nl. Blechei	igengewi	chtbeieir 2.60	erStützw	veiteL[m]	3.20	3.40	3.60	3.80	1 4.00
			1 2	3,77 3,77	3,31 3,31	2,61 2,61	2,12 2,12	1,75 1,75	1,47 1,47	1,25 1,25	1,09 1,09	0,97 0,97	0,86 0,86	0,77 0,77	0,70 0,70	0,63 0,63	0,58 0,58
0,63	0,063	1,55	3 4	3,77 3,77	3,31 3,31	2,61 2,61	2,12 2,12	1,75 1,75	1,47 1,39	1,25 1,10	1,09 0,88	0,97 0,71	0,86 0,59	0,74 0,49	0,62 0,41	0,53 0,35	0,45 0,30
0,75	0,075	1,81	1 2 3 4	5,40 5,40 5,40 5,40	4,74 4,74 4,74 4,74	3,75 3,75 3,75 3,75	3,04 3,04 3,04 3,04	2,51 2,51 2,51 2,28	2,11 2,11 2,11 1,76	1,80 1,80 1,80 1,38	1,55 1,55 1,55 1,11	1,37 1,37 1,35 0,90	1,22 1,22 1,11 0,74	1,10 1,10 0,93 0,62	0,99 0,99 0,78 0,52	0,90 0,89 0,66 0,44	0,82 0,76 0,57 0,38
0,88	0,088	2,69	1 2 3 4	6,89 6,89 6,89 6,89	6,05 6,05 6,05 6,05	4,78 4,78 4,78 4,78	3,87 3,87 3,87 3,76	3,20 3,20 3,20 2,82	2,75 2,75 2,75 2,18	2,41 2,41 2,41 1,71	2,12 2,12 2,06 1,37	1,88 1,88 1,67 1,11	1,68 1,68 1,38 0,92	1,51 1,51 1,15 0,77	1,37 1,29 0,97 0,64	1,24 1,10 0,82 0,55	1,13 0,94 0,70 0,47

I = Grenzstützweite, bis zu der das Trapezprofil als tragendes Bauelement von Dach- und Deckensystemen ohne Laufbohlen verwendet werden darf.

Zeile 1 = Ohne Beschränkung der Durchbiegung Zeile 2 = Zulässige Belastung bei einer Durchbiegung von f<= L/150 Zeile 3 = Zulässige Belastung bei einer Durchbiegung von f<= L/200

Zeile 4 = Zulässige Belastung bei einer Durchbiegung von f<= L/300

Endauflagerbreite a>=40 mm Zwischenauflagerbreite b>=60 mm



PP - Prof 50 - 250

Querschnitts- und Bemessungswerte nach DIN 18807

Profiltafel in POSITIVLAGE

Maße in [mm]

Anlage 5.1 zum Prüfbescheid Als Typenentwurf

in bautechnischer Hinsicht geprüft Prüfbescheid Nr. II B6-543-160 Ministerium für Bauen und Wohnen

- PRÜFAMT FÜR BAUSTATIK -Düsseldorf, den 7.10.1994

m Auftrag mulentelde Den Bearbeiter

Aordrhein-Westfelon

Nennstreckgrenze des Stahlkerns $\beta_{S,N}$ = 320 N/mm²

Maßgebende Querschnittswerte

ützweiten ³⁾	Grenzst	om für	iung	eanspruch	nalkraftb	Norr		ing 1)	Biegu	Eigen-	Nenn-	
gr		er	twirkend	mi	rter	t reduzie	nich	1553		last	blech-	
Mehrfeld-	Einfeld-	t ²⁾	uerschnit	Qı	tt	uerschni	Q				dicke	
träger [m]	träger [m]	Z _{ef}	i _{ef} [cm]	A _{ef} [cm ² /m]	Z _g [cm]	i _g [cm]	A _g [cm ² /m]	l ef [cm ⁴ /m]	l ⁺ _{ef} [cm ⁴ /m]	g [kN/m²]	t _N [mm]	
_ 8) _ 8) _ 2,69	_ 8) _ 8) _ 2,15	2,47 2,45 2,43	2,32 2,28 2,24	2,44 3,45 4,71	1,78 1,78 1,78	2,01 2,01 2,01	7,07 8,51 10,1	26,0 32,6 40,1	19,0 24,0 29,6	0,063 0,075 0,088	0,63 0,75 0,88	

Schu	hfel	dwerte
Julia		UVVCILC

Schubf	eldwerte							-r	
				zul T ₃	$_{3} = G_{S}/750 \text{ [kf}$	N/m]		zul	F _t ⁷⁾
					G _S =10 ⁴ /(K	1+K ₂ /L _S) ⁴⁾		Einleitun	igslänge a
t _N	min L _S 4)	zul T ₁	zul T ₂	L _G ⁵⁾	K ₁	K ₂	K ₃ ⁶⁾	≥130 mm	≥280 mm
[mm]	[m]	[kN/m]	[kN/m]	[m]	[m/kN]	[m ² /kN]	[-]	[kN]	[kN]
Ausfüh	rung nach D	IN 18 807 T	eil 3, Bild 6						,
0,63 0,75 0,88	2,52 2,30 2,11	1,61 2,12 2,73	1,89 3,00 4,56	2,52 2,30 2,11	0,252 0,209 0,177	17,56 11,05 7,260	0,23 0,25 0,27	5,40 6,50 7,69	8,30 10,0 11,8
Ausfüh	rung nach D	IN 18 807 T	eil 3, Bild 7	V.	715207				
0,63 0,75 0,88	2,59 2,36 2,17	3,09 4,08 5,25	1,80 2,87 4,36	3,62 3,03 2,57	0,252 0,209 0,177	14,70 9,251 6,076	0,33 0,33 0,33	5,40 6,50 7,69	8,30 10,0 11,8

- Effektive Trägheitsmomente für Lastrichtung nach unten (+) bzw. oben (-). 1)
- 2) Mitwirkender Querschnitt für eine konstante Druckspannung $\sigma = \beta_{S,N}$.
- Maximale Stützweiten, bis zu denen das Trapezprofil als tragendes Bauteil von Dach- und Deckensystemen verwendet werden darf.
- Bei Schubfeldlängen $L_S < \min L_S$ müssen die zulässigen Schubflüsse reduziert werden. 4)
- Bei Schubfeldlängen $L_S > L_G$ ist zul T_3 nicht maßgebend. 5)
- Auflager-Kontaktkräfte $R_B = K_3 \gamma \cdot T$; (T = vorhandener Schubflu β in [kN/m]) 6)
- Einzellast gemäß DIN 18807 Teil 3, Abschnitt 3.6.1.5. 7)
- Als tragendes Bauteil in Dach- und Deckensystemen nicht zugelassen. 8)

PP - Prof 50 - 250

Querschnitts- und Bemessungswerte nach DIN 18807, Teil 1

Profiltafel in

POSITIVLAGE

Als Typenentwurf in bautechnischer Hinsicht geprüft Prüfbescheid Nr. II B6-543-160

Anlage 5.2 zum Prüfbescheid

Ministerium für Bauen und Wohnen - PRÜFAMT FÜR BAUSTATIK -

> Düsseldorf, den 7.10.1994 Der Bearbeiter

> > Wordthain- Westfolo

Aufnehmbare Trägfähigkeitswerte für nach unten	gerichtete und andrückende Flächen-Belastung 1)

Nenn-	Feld-		uflager- räfte			ehmbare So schenauflag		F	Reststützmome	ente ⁶⁾
blech- dicke	moment	Trag- fähigkeit	Gebrauchs- fähigkeit		axM _{B.≥} M _B M ⁰ _d - (R _B /C			MR= -	für I < min - min I 	
						maximales Stūtz- moment	maximale Zwischen- auflager- kraft	MR = n	naxMA fürl>m	ax I
t _N	M _{dF}	R _{A,T}	R _{A,G}	M ⁰ d	С	max M _B	max R _B	min I	max I	max M _R
	[kNm/m]	[kN/m]	[kN/m]	[kNm/m]	[kN1/2/m]	[kNm/m]	[kN/m]	[m]	[m]	[kNm/m]
		²⁾³⁾ b _A ≥ 40	0 mm	3) Zwisch	nenauflage	rbreite b _{B.} >	60 mm, ∈=	2, [C]:	= kN ^{1/2} /m	
0,63	1,80	5,52	5,52	1,73	10,9	1,73	12,9			
0,75	2,58	7,77	7,77	2,46	12,8	2,46	17,9	İ		
88,0	3,29	10,6	10,6	3,40	14,7	3,40	24,3			
		²⁾⁴⁾ b _A ≥ 40) mm	4) Zwisch	enauflager	breite b _{B.≥}	160 mm, €	= 2, [C]	$= kN^{1/2}/m$	
0,63	1,80	5,52	5,52	1,73	16,0	1,73	18,8			
0,75	2,58	7,77	7,77	2,46	18,6	2,46	26,1			
0,88	3,29	10,6	10,6	3,40	21,3	3,40	35,2		. /	

Aufnehmbare Trägfähigkeitswerte für nach oben gerichtete und abhebende Flächen-Belastung 1) 6)

Nenn-	Feld-	Befes	tigung in je	dem anl	iegenden G	aurt	Befesti	gung in jede	em 2. an	liegenden	Gurt
blech- dicke	moment	Endauf- lager	Zwis	schenau	flager ⁵⁾ , ϵ :	= 1	Endauf- lager	Zwis	schenau	flager ⁵⁾ , ϵ	= 1
t _N [mm]	M _{dF} [kNm/m]	R _A [kN/m]	M ⁰ _d [kNm/m]	C [1/m]	max M _B [kNm/m]	max R _B [kN/m]	R _A [kN/m]	M ⁰ d [kNm/m]	C [1/m]	max M _B [kNm/m]	max R _B [kN/m]
0,63 0,75 0,88	1,73 2,46 3,40	23,5 36,4 51,0	2,34 3,35 4,28	26,1 28,2 31,0	1,80 2,58 3,29	46,9 72,8 102,0	11,7 18,2 25,5	1,17 1,68 2,14	26,1 28,2 31,0	0,90 1,29 1,65	23,5 36,4 51,0

- 1) An den Stellen von Linienlasten quer zur Spannrichtung und von Einzellasten ist der Nachweis nicht mit dem Feldmoment M_{dF}, sondern mit dem Stützmoment M_B für die entgegengesetzte Lastrichtung zu führen.
- 2) b_A = Endauflagerbreite.Bei einem Profiltafelüberstand ü>50 mm dürfen die R_A-Werte um 20% erhöht werden.
- 3) Für kleinere Auflagerbreiten muß zwischen den angegebenen aufnehmbaren Tragfähigkeitswerten und denen bei 10 mm Auflagerbreite linear interpoliert werden. Für Auflagerbreiten kleiner als 10 mm, z.B. bei Rohren, darf maximal 10 mm eingesetzt werden.

4) Bei Auflagerbreiten, die zwischen den aufgeführten Werten liegen, dürfen die aufnehmbaren Tragfähig-

keitswerte jeweils linear interpoliert werden. 5) Interaktionsbeziehung für M_B und R_B : $M_B = M_d^0 - (R_B/C)^{\epsilon}$. Sind keine Werte für M_d^0 und C

angegeben, ist M_B = maxM_B zu setzen.

6) Sind keine Werte für die Reststützmomente angegeben, ist beim Tragsicherheitsnachweis MR setzen, oder ein Nachweis mit Y = 1,7 nach der Elastizitätstheorie zu führen. (I = kleinere delt benachbarten Stützweiten).

Belastungstabellen nach DIN 18 807. Die Werte im Rasterfeld gelten für tragende Dachsysteme.

EINFEI	LDTRÄGER				a III	шЩ		1									
Blech- dicke t	Eigen- gewicht	Grenz- stützweite							gengewic				2.20		2.60	2.00	
[mm]	a [kN/m²]	l[m]	Ь,	1,50	1,60	1,80	2,00	2,20	2,40	2,60	2,80	3,00	3,20	3,40	3,60	3,80	4,00
			1 1	3,61	3,18	2,51	2,03	1,68	1,41	1,20	1,04	0,90	0,79	0,70	0,63	0,56	0,51
			2	3,61	3,18	2,51	2,03	1,68	1,41	1,20	1,04	0,90	0,79	0,70	0,60	0,51	0,44
0,63	0,063	1,24	3	3,61	3,18	2,51	2,03	1,68	1,41	1,19	0,95	0,77	0,64	0,53	0,45	0,38	0,33
			4	3,61	3,18	2,39	1,74	1,31	1,01	0,79	0,64	0,52	0,43	0,35	0,30	0,25	0,22
			1	5,14	4,52	3,57	2,89	2,39	2,01	1,71	1,48	1,29	1,13	1,00	0,89	0,80	0,72
			2	5,14	4,52	3,57	2,89	2,39	2,01	1,71	1,48	1,29	1,07	0,89	0,75	0,64	0,55
0,75	0,075	1,80	3	5,14	4,52	3,57	2,89	2,39	1,90	1,50	1,20	0,97	0,80	0,67	0,56	0,48	0,41
		·	4	5,14	4,28	3,00	2,19	1,65	1,27	1,00	0,80	0,65	0,53	0,45	0,38	0,32	0,27
			1	7,11	6,25	4,94	4,00	3,30	2,78	2,37	2,04	1,78	1,56	1,38	1,23	1,11	1,00
			2	7,11	6,25	4,94	4,00	3,30	2,78	2,37	1,96	1,60	1,32	1,20	0,92	0,79	0,67
0,88	0,088	3,56	3	7,11	6,25	4,94	4,00	3,04	2,34	1,84	1,47	1,20	0,99	0,90	0,69	0,59	0,51
			4	6,39	5,26	3,70	2,70	2,02	1,56	1,23	0,98	0,80	0,66	0,60	0,46	0,39	0,34

ZWEIF	ELDTRÄGE	:R			a	ШГ ^q				<u> </u>							
Blech- dicke t [mm]	Eigen- gewicht a [kN/m²]	Grenz- stützweite [m]		Zulässige Belastung q [kN/m²] einschl. Blecheigengewicht bei einer Stützweite L [m] 1.50 1.60 1.80 2.00 2.20 2.40 2.60 2.80 3.00 3.20 3.40 3.60 3.80 4.00													
0,63	0,063	1,55	1 2 3 4	3,33 3,33 3,33 3,33 3,33	3,02 3,02 3,02 3,02 3,02	2,51 2,51 2,51 2,51	2,03 2,03 2,03 2,03 2,03	1,68 1,68 1,68 1,68	1,41 1,41 1,41 1,41	1,20 1,20 1,20 1,20 1,20	1,04 1,04 1,04 1,04	0,90 0,90 0,90 0,90	0,79 0,79 0,79 0,79 0,79	0,70 0,70 0,70 0,70 0,70	0,63 0,63 0,63 0,63	0,56 0,56 0,56 0,56	0,51 0,51 0,51 0,51
0,75	0,075	2,25	1 2 3 4	4,72 4,72 4,72 4,72	4,28 4,28 4,28 4,28	3,57 3,57 3,57 3,57	2,89 2,89 2,89 2,89	2,39 2,39 2,39 2,39	2,01 2,01 2,01 2,01	1,71 1,71 1,71 1,71	1,48 1,48 1,48 1,48	1,29 1,29 1,29 1,29	1,13 1,13 1,13 1,13	1,00 1,00 1,00 1,00	0,89 0,89 0,89 0,89	0,80 0,80 0,80 0,77	0,72 0,72 0,72 0,66
0,88	0,088	4,45	1 2 3 4	6,21 6,21 6,21 6,21	5,62 5,62 5,62 5,62	4,67 4,67 4,67 4,67	3,94 3,94 3,94 3,94	3,30 3,30 3,30 3,30	2,78 2,78 2,78 2,78 2,78	2,37 2,37 2,37 2,37	2,04 2,04 2,04 2,04	1,78 1,78 1,78 1,78	1,56 1,56 1,56 1,56	1,38 1,38 1,38 1,32	1,23 1,23 1,23 1,11	1,11 1,11 1,11 0,95	1,00 1,00 1,00 0,81

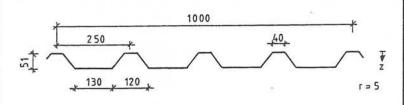
DREIFE	LDTRÄGE	R		•													
Blech- dicke t [mm]	Eigen- gewicht a [kN/m²]	Grenz- stützweite [m]		Zulässig	e Belastui 1.60	ngg[kN/r 1.80	n²]einsch	I.Blechei	gengewic	htbeiein I 2.60	erStützwe	eiteL[m] 3.00	3.20	3.40	3.60	3.80	4,00
0,63	0,063	1,55	1 2 3 4	3,61 3,61 3,61 3,61	3,18 3,18 3,18 3,18 3,18	2,51 2,51 2,51 2,51 2,51	2,03 2,03 2,03 2,03 2,03	1,68 1,68 1,68 1,68	1,45 1,45 1,45 1,45	1,27 1,27 1,27 1,27 1,27	1,12 1,12 1,12 1,12 1,12	1,00 1,00 1,00 0,98	0,89 0,89 0,89 0,89	0,80 0,80 0,80 0,80 0,67	0,72 0,72 0,72 0,72 0,56	0,66 0,66 0,66 0,48	0,60 0,60 0,60 0,60 0,41
0,75	0,075	2,25	1 2 3 4	5,14 5,14 5,14 5,14	4,52 4,52 4,52 4,52	3,57 3,57 3,57 3,57	2,89 2,89 2,89 2,89	2,39 2,39 2,39 2,39	2,07 2,07 2,07 2,07	1,81 1,81 1,81 1,81	1,60 1,60 1,60 1,51	1,42 1,42 1,42 1,23	1,27 1,27 1,27 1,01	1,14 1,14 1,14 0,84	1,03 1,03 1,03 0,71	0,94 0,94 0,90 0,60	0,85 0,85 0,78 0,52
0,88	0,088	4,45	1 2 3 4	7,11 7,11 7,11 7,11	6,25 6,25 6,25 6,25	4,94 4,94 4,94 4,94	4,00 4,00 4,00 4,00	3,30 3,30 3,30 3,30	2,78 2,78 2,78 2,78	2,37 2,37 2,37 2,37	2,08 2,08 2,08 1,85	1,84 1,84 1,84 1,51	1,64 1,64 1,64 1,24	1,48 1,48 1,48 1,04	1,33 1,33 1,31 0,87	1,21 1,21 1,11 0,74	1,10 1,10 0,95 0,64

I = Grenzstützweite, bis zu der das Trapezprofil als tragendes Bauelement von Dach- und Deckensystemen ohne Laufbohlen verwendet werden darf.

Zeile 1 = Ohne Beschränkung der Durchbiegung Zeile 2 = Zulässige Belastung bei einer Durchbiegung von f<= L/150 Zeile 3 = Zulässige Belastung bei einer Durchbiegung von f<= L/200

Zeile 4 = Zulässige Belastung bei einer Durchbiegung von f<= L/300

Endauflagerbreite a>=40 mm Zwischenauflagerbreite b>=60 mm



PP - Prof 50 - 250

Querschnitts- und Bemessungswerte nach DIN 18807

Profiltafel in NEGATIVLAGE

Maβe in [mm]

Anlage 5.3 zum Prüfbescheid Als Typenentwurf

in bautechnischer Hinsicht geprüft Prüfbescheid Nr. II B6-543-160

Ministerium für Bauen und Wohnen - PRÜFAMT FÜR BAUSTATIK -

Düsseldorf, den 7.10.1994

Im Auftrag Der Bearbeiter

Nennstreckgrenze des Stahlkerns $\beta_{S.N}$ = 320 N/mm²

Nenn-	Eigen-	Biegu	ung 1)		Norr	Grenzstützweiten ³⁾					
blech- dicke	last			ASS-2500	t reduzie Juerschni		77.77	itwirkend uerschnit	Einfeld-	l _{gr} Mehrfeld	
t _N [mm]	g [kN/m²]	l ⁺ _{ef} [cm ⁴ /m]	1 ef [cm ⁴ /m]	A _g [cm ² /m]	i _g [cm]	Z _g [cm]	A _{ef} [cm ² /m]	i _{ef} [cm]	Z _{ef} [cm]	träger [m]	träger [m]
0,63 0,75 0,88	0,063 0,075 0,088	26,0 32,6 40,1	19,0 24,0 29,6	7,07 8,51 10,1	2,01 2,01 2,01	3,32 3,32 3,32	2,44 3,45 4,71	2,32 2,28 2,24	2,63 2,65 2,67	1,24 1,80 3,56	1,55 2,25 4,45
Schubf	eldwerte	T			zul T ₃	= G _S /750) [kN/m]			zul	F _t ⁷⁾

				zul T ₃	= $G_S/750 \text{ [kN/m]}$ $G_S=10^4/(K_1+K_2/L_S)^{4)}$			zul	F _t ⁷⁾
							E	Einleitun	gslänge a
t _N	min L _S 4)	zul T ₁	zul T ₂	L _G 5)	K ₁	K ₂	K ₃ ⁶⁾	≥130 mm	≥280 mm
[mm]	[m]	[kN/m]	[kN/m]	[m]	[m/kN]	[m ² /kN]	[-]	[kN]	[kN]
Ausfüh	rung nach D	IN 18 807 T	eil 3, Bild 6						
0,63 0,75 0,88	2,67 2,43 2,24	2,59 3,42 4,40	2,07 3,28 5,00	3,87 3,23 2,74	0,252 0,209 0,177	18,95 11,93 7,836	0,14 0,15 0,17	11,6 14,0 16,6	11,6 14,0 16,6
Ausfühi	rung nach D	IN 18 807 T	eil 3, Bild 7				E.		
0,63 0,75 0,88	1,06 0,97 0,89	8,48 11,2 14,4	11,5 18,2 27,7	1,06 0,97 0,89	0,252 0,209 0,177	0,712 0,448 0,294	0,50 0,50 0,50	11,6 14,0 16,6	11,6 14,0 16,6

- 1) Effektive Trägheitsmomente für Lastrichtung nach unten (+) bzw. oben (-).
- 2) Mitwirkender Querschnitt für eine konstante Druckspannung $\sigma = \beta_{S,N}$.
- Maximale Stützweiten, bis zu denen das Trapezprofil als tragendes Bauteil von Dach- und Deckensystemen verwendet werden darf.
- 4) Bei Schubfeldlängen L_S < min L_S müssen die zulässigen Schubflüsse reduziert werden.
- 5) Bei Schubfeldlängen $L_S > L_G$ ist zul T_3 nicht maßgebend.
- 6) Auflager-Kontaktkräfte $R_B = K_3 \cdot \gamma \cdot T$; (T = vorhandener Schubflu β in [kN/m])
- 7) Einzellast gemäß DIN 18807 Teil 3, Abschnitt 3.6.1.5.

PP - Prof 50 - 250

Querschnitts- und Bemessungswerte nach DIN 18807, Teil 1

Profiltafel in

NEGATIVLAGE

Anlage 5.4 zum Prüfbescheid Als Typenentwurf

in bautechnischer Hinsicht geprüft Prüfbescheid Nr. II B6-543-160

Ministerium für Bauen und Wohnen - PRÜFAMT FÜR BAUSTATIK -

Düsseldorf, den 7.10.1994

Aufneh	mbare Trä	gfähigkeits	werte für na	ch unten g	gerichtete u	und andrüc	kende Fläc	hen-Belasti	ung ¹⁾			
Nenn-	Feld-	Enda	uflager- räfte	Elas	stisch aufn	ehmbare S ischenaufla		Reststützmomente ⁶⁾				
blech- dicke	moment	Trag- fähigkeit	Gebrauchs- fähigkeit		$M_{\rm d}^0 - (R_{\rm B}/C)$			MR = -	0 für I < min I - min I * max max I- min I			
						maximales Stütz- moment	maximale Zwischen- auflager- kraft		maxMp, fūrl>m	nex I		
t _N	M _{dF}	R _{A,T}	RAG	Mod	С	max M _B	max R _B	min I	max I	max M _R		
[mm]	[kNm/m]	[kN/m]	[kN/m]	[kNm/m]	[kN1/2/m]	[kNm/m]	[kN/m]	[m]	[m]	[kNm/m]		
		2)3)bA > 41	0 mm	³⁾ Zwischenauflagerbreite $b_B \ge 60$ mm, $\epsilon = 2$, [C] = $kN^{1/2}/m$								
0,63 0,75	1,73 2,46	5,52 7,77	5,52 7,77	1,80 2,58	10,7 12,5	1,80 2,58 3,29	12,9 17,9 24,3					
0,88	3,40	10,6	10,6	3,29	15,0	3,29	24,5					
		2)4)b _A ≥ 40	0 mm	4) Zwisch	enauflage	rbreite b _{B.>}	160 mm,	€ = 2, [C	$] = kN^{1/2}/m$			
0,63 0,75 0,88	1,73 2,46 3,40	5,52 7,77 10,6	5,52 7,77 10,6	1,80 2,58 3,29	15,6 18,2 21,7	1,80 2,58 3,29	18,8 26,1 35,2					
						*						
Aufnehi	mbare Trä	gfähigkeits	werte für na	ch oben ge	erichtete ui	nd abhebe						
Nenn-	Feld-	Bef	estigung in je				Befestigung in jedem 2. anliegenden Gurt					
blech-	moment	Endauf-	Zwi	schenaufla	$ager^{5)}$, $\epsilon =$	1	Endauf-	Zwischenauflager ⁵⁾ , $\epsilon = 1$				

lager dicke lager M_d^0 C max R_B M_0^q C max M_B max R_R R_A max M_B M_{dF} R_A tN [kNm/m] [kN/m] [kNm/m] [1/m] [kNm/m] [kNm/m] [kN/m] [kN/m]

[1/m] [kNm/m] [kN/m] [mm] 27,2 0,86 23,5 11.7 1,12 2,25 27,2 1,73 46,9 0,63 1,80 23,5 1,60 29,6 1,23 36,4 2,46 72,8 18,2 3,20 29,6 0,75 2,58 36,4 51,0 2,21 30,0 1,70 102,0 25,5 0,88 3,29 51,0 4,42 30,0 3,40

1) An den Stellen von Linienlasten quer zur Spannrichtung und von Einzellasten ist der Nachweis nicht mit dem Feldmoment M_{dF}, sondern mit dem Stützmoment M_B für die entgegengesetzte Lastrichtung zu führen.

2) b_A = Endauflagerbreite.Bei einem Profiltafelüberstand ü>50 mm dürfen die R_A-Werte um 20% erhöht werden. 3) Für kleinere Auflagerbreiten muß zwischen den angegebenen aufnehmbaren Tragfähigkeitswerten und denen bei 10 mm Auflagerbreite linear interpoliert werden. Für Auflagerbreiten kleiner als 10 mm, z.B.

bei Rohren, darf maximal 10 mm eingesetzt werden.

4) Bei Auflagerbreiten, die zwischen den aufgeführten Werten liegen, dürfen die aufnehmbaren Tragfähig
kologie der Worden.

5) Interaktionsbeziehung für M_B und R_B : $M_B = M_d^0 - (R_B/C)^{\epsilon}$. Sind keine Werte für M_d^0 und C angegeben, ist M_B = maxM_B zu setzen.

6) Sind keine Werte für die Reststützmomente angegeben, ist beim Tragsicherheitsnachweis M_R = setzen, oder ein Nachweis mit γ = 1,7 nach der Elastizitätstheorie zu führen. (I = kleinere der benachbarten Stützweiten).